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Abstract.  The optimization of a large random portfolio under the expected 
shortfall risk measure with an �2 regularizer is carried out by analytical 
calculation for the case of uncorrelated Gaussian returns. The regularizer reins 
in the large sample fluctuations and the concomitant divergent estimation 
error, and eliminates the phase transition where this error would otherwise 
blow up. In the data-dominated region, where the number N  of dierent assets 
in the portfolio is much less than the length T  of the available time series, 
the regularizer plays a negligible role even if its strength η is large, while in 
the opposite limit, where the size of samples is comparable to, or even smaller 
than the number of assets, the optimum is almost entirely determined by the 
regularizer. We construct the contour map of estimation error on the N/T  
versus η plane and find that for a given value of the estimation error the gain 
in N/T  due to the regularizer can reach a factor of about four for a suciently 
strong regularizer.
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1. Introduction

The current international market risk regulation measures risk in terms of expected 
shortfall (ES) [1]. In order to decrease their capital requirements, financial institutions 
have to optimize the ES of their trading book.

Optimizing a large portfolio may be dicult under any risk measure, but becomes 
particularly hard in the case of Value at Risk (VaR) and ES that discard a large part 
of the data except those at or above a high quantile. Without some kind of regulariza-
tion, this leads to a phase transition at a critical value rc of the ratio r = N/T  where 
N  is the dimension of the portfolio (the number of dierent assets or risk factors) 
and T  is the sample size (the length of the available time series). This critical ratio 
depends on the confidence level α that determines the VaR threshold above which 
the losses are to be averaged to obtain the ES. Beyond rc it is impossible to carry out 
the optim ization, and upon approaching this critical value from below the estimation 
error increases without bound.

The estimation error problem of portfolio selection has been the subject of a large 
number of works, [2–12] are but a small selection from this vast literature. The critical 
behavior and the locus of the phase boundary separating the region where the optim-
ization is feasible from the one where it is not has also been studied in a series of papers 
[13–17].

In the present note we discuss the eect of adding an �2 regularizer to the ES risk 
measure. As noted in [18] and [19], the optimization problem so obtained is equivalent 
to one of the variants of support vector regression (ν-SVR) [20], therefore its study 
is of interest also for machine learning, independently of the portfolio optimization 
context. Concerning its specific financial application, �2 regularization may have two 
dierent interpretations. First, �2 has the tendency to pull the solution towards the 
diagonal, where all the weights are the same. As such, �2 represents a diversification 
pressure [21, 22] that may be useful in a situation where, e.g. the market is dominated 
by a small number of blue chips. Alternatively, the portfolio manager may wish to take 
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into account the market impact of the future liquidation of the portfolio already at its 
construction. As shown in [17], market impact considerations lead one to regularized 
portfolio optimization, with �2 corresponding to linear impact.

In this paper we carry out the optimization of �2-regularized ES analytically in the 
special case of i.i.d. Gaussian distributed returns, in the limit where both the dimen-
sion and the sample size are large, but their ratio r = N/T  is fixed. The calculation will 
be performed by the method of replicas borrowed from the statistical physics of dis-
ordered systems [23]. The present work extends a previous paper [24] by incorporating 
the regularizer. By preventing the phase transition from taking place, the regularizer 
fundamentally alters the overall picture (in this respect, the role of the regularizer is 
analogous to that of an external field coupled to the order parameter in a phase trans-
ition). As the technical details of the replica calculation have been laid out in [13] and, 
in a somewhat dierent form, in [17], we do not repeat them here. Instead we just 
recall the setup of the problem and focus on the most important result: the relative 
estimation error (closely related to the out-of-sample estimator of ES) as a function of 
r = N/T  and the strength of the regularizer η.

Our results exhibit a clear distinction between the region in the space of parameters 
where data dominate and the regularizer plays a minor role, from the one where the 
data are insucient and the regularizer stabilizes the estimate at the price of essentially 
suppressing the data. Thereby, our results provide a clean and explicit example of what 
statisticians call the bias-variance trade-o that lies at the heart of the regularization 
procedure. We find that the transition between the data-dominated regime and the 
bias-dominated one is rather sharp, and it is only around this transition that an actual 
trade-o takes place. Following the curves of fixed estimation error on the r − η plane 
we can see that r increases with increasing η by a factor of approximately 4. Beyond 
this point the contour lines turn back and we go over onto a branch of the contour line 
where the optimization is determined by the regularizer rather than the data. The plan 
of the rest of the paper is as follows. In section 2 we present the formalism, in section 3 
display our results and in section 4 draw our conclusions.

2. The optimization of regularized ES

The simple portfolios we consider here are linear combinations of N  risk factors, with 
returns xi and weights wi, i = 1, 2, ...,N :

X =
N∑
i=1

wixi. (1)

The weights will be normalized such that their sum is N , instead of the customary 1:

N∑
i=1

wi = N . (2)

The motivation for choosing this normalization is that we wish to have weights of 
order unity, rather than 1/N , in the limit N → ∞. Apart from the budget constraint, 
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the weights will not be subject to any other condition. In particular, they can take any 
real value, that is we are allowing unlimited short positions. We do not impose the 
usual constraint on the expected return on the portfolio either, so we are looking for 
the global minimum risk portfolio. This setup is motivated by simplicity, but we note 
that tracking a benchmark requires exactly this kind of optimization to be performed.

The probability for the loss �({wi}, {xi}) = −X to be smaller than a threshold �0 is:

P ({wi}, �0) =
∫ N∏

i=1

dxip({xi})θ (�0 − �({wi}, {xi}))

where p({xi}) is the probability density of the returns, and θ(x) is the Heaviside func-
tion: θ(x) = 1 for x > 0, and zero otherwise. The VaR at confidence level α is then 
defined as:

VaRα({wi}) = min{�0 : P ({wi}, �0) � α}. (3)
Expected Shortfall is the average loss beyond the VaR quantile:

ES({wi}) =
1

1− α

∫
Πidxip({xi})�({wi}, {xi})θ(�({wi}, {xi})− VaRα({wi})).

 

(4)

Portfolio optimization seeks to find the optimal weights that make the above ES mini-
mal subject to the budget constraint (2). Instead of dealing directly with ES, Rockafellar 
and Uryasev [25] proposed to minimize the related function

Fα({wi}, ε) = ε+
1

1− α

∫
Πidxip({xi}) [�({wi}, {xi})− ε]+ (5)

over the variable ε and the weights wi:

ES({wi}) = minεFα({wi}, ε), (6)
where [x]+ = (x+ |x|)/2.

The probability distribution of the returns is not known, so one can only sample 
it, and replace the integral in (4) by time-averaging over the discrete observations. 
Rockafellar and Uryasev [25] showed that the optimization of the resulting loss function 
can be reduced to the following linear programming task: minimize the cost function

E(ε, {ut}) = (1− α)Tε+
T∑
t=1

ut (7)

under the constraints

ut � 0 ∀ t,

ut + ε+
N∑
i=1

xitwi � 0 ∀ t, (8)

and
∑
i

wi = N .

It is convenient to introduce the regularizer at this stage, by adding the �2-norm to the 
loss function [17]:

https://doi.org/10.1088/1742-5468/aaf108
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min
�w,�u,ε

[
(1− α)Tε+

T∑
t=1

ut + η
∑
i

w2
i

]
, (9)

s.t. �w · �xt + ε+ ut � 0; ut � 0; ∀t, (10)
∑
i

wi = N ,
 (11)

where ε and �u are auxiliary variables, and the coecient η sets the strength of the 
regularization.

As the constraint on the expected return has been omitted, we are seeking the 
global optimum of the portfolio here. If the returns xit are i.i.d. Gaussian variables and 
N ,T → ∞ with r = N/T  fixed, the method of replicas allows one to reduce the above 
optimization task in N + T + 1 variables to the optimization of a cost function depend-
ing on only six variables, the so-called order parameters [13, 17]:

F (λ, ε, q0, ∆, q̂0, ∆̂) = λ+
1

r
(1− α)ε−∆q̂0 − ∆̂q0

+ 〈minw [V (w, z)]〉z +
∆

2r
√
π

∫ ∞

−∞
dse−s2g

(
ε

∆
+ s

√
2q0
∆2

)
,

 

(12)

where

V (w, z) = ∆̂w2 − λw − zw
√
−2q̂0 + ηw2, (13)

〈·〉z is an average over the standard normal variable z, and

g(x) =




0, x � 0

x2, −1 � x � 0

−2x− 1, x < −1

. (14)

One can readily see that the stationarity conditions are:

1 = 〈w∗〉z (15)

(1− α) +
1

2
√
π

∫ ∞

−∞
ds e−s2g′

(
ε

∆
+ s

√
2q0
∆2

)
= 0 (16)

∆̂− 1

2r
√
2πq0

∫ ∞

−∞
ds e−s2sg′

(
ε

∆
+ s

√
2q0
∆2

)
= 0 (17)

−q̂0 − 2
∆̂q0
∆

+
1

2r
√
π

∫ ∞

−∞
ds e−s2g

(
ε

∆
+ s

√
2q0
∆2

)
+

(1− α)

r

ε

∆
= 0 (18)

∆ =
1√
−2q̂0

〈w∗z〉z (19)

q0 =
〈
w∗2〉

z
, (20)
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where the variable w∗ is that value of the weight that minimizes the ‘potential’ V  in 
(13). (The prime means derivative with respect to the argument.)

Three of the order parameters are easily eliminated and the integrals can be reduced 
to the error function and its integrals by repeated integration by parts, as in [24]. 
Finally, one ends up with three equations to be solved:

r (1− 2η∆) = Φ

(
∆+ ε
√
q0

)
− Φ

(
∆+ ε
√
q0

)
 (21)

α =

√
q0

∆

{
Ψ

(
∆+ ε
√
q0

)
−Ψ

(
∆+ ε
√
q0

)}
 (22)

1

2∆2
+

α

r

ε

∆
+

q0
2∆2

+
1

2r
− 2ηq0

∆2
=

q0
r∆2

{
W

(
∆+ ε
√
q0

)
−W

(
∆+ ε
√
q0

)}
,

 (23)
where

Φ(x) =
1√
2π

∫ x

−∞
dte−t2/2, (24)

Ψ(x) = xΦ(x) +
1√
2π

e−x2/2, (25)

W (x) =
x2 + 1

2
Φ(x) +

x

2

1√
2π

e−x2/2. (26)

These functions are closely related to each other: Φ(x) is the derivative of Ψ(x) and 
Ψ(x) is the derivative of W (x).

As explained in [24], each of the three remaining order parameters in the above set 
of equations, q0, ∆, and ε has a direct financial meaning: ∆ is related to the in-sample 
estimator of ES (and also to the second derivative of the cost function F  with respect 
to the Lagrange multiplyer λ associated with the budget constraint) and ε is the in-
sample VaR of the portfolio optimized under the ES risk measure. Our present concern 
is the order parameter q0, which is a measure of the out-of-sample estimator of ES. As 
shown in [24], if ESout is the out-of-sample estimate of ES based on samples of size T , 
and ES(0) is its true value (that would obtain for N  finite and T → ∞), then

ESout

ES(0)
=

√
q0, (27)

that is 
√
q0 − 1 is the relative estimation error of the out-of-sample estimate.

The task now is to solve the stationary conditions and get the cost function by 
substituting the solutions back into equation (12). The in-sample value of Expected 
Shortfall is simply related to the cost function as:

ES =
rF

1− α
. (28)

https://doi.org/10.1088/1742-5468/aaf108
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The fundamental cause of the divergence of estimation error in the original, non-
regularized problem is that ES as a risk measure is not bounded from below. In finite 
samples it can happen that one of the assets, or a combination of assets, dominates the 
others (i.e. produces a larger return than the others in the given sample), thereby lead-
ing to an apparent arbitrage: one can achieve an arbitrarily large gain (an arbitrarily 
large negative ES) by going very long in the dominant asset and correspondingly short 
in the others [13, 26]. It is evident that this apparent arbitrage is a mere statistical 
fluctuation, but along a special curve in the r − α plane this divergence occurs with 
probability one [13]. As a result, the estimation error will diverge along the phase 
boundary shown in figure 1. Note that in high-dimensional statistics where regulariza-
tion is routinely applied the loss is always bounded both from above and below. The 
setting in the present paper is, therefore, very dierent from the customary setup, 
which explaines the unusual results.

The purpose of regularization is to penalize the large fluctuations of the weight vec-
tor, thereby eliminating this phase transition.

Since ES is a piecewise linear function of the weights, the quadratic regularizer will 
overcome excessive fluctuations, no matter how small the coecient η is. Deep inside 
the region of stability (shown by pale yellow in figure 1), a weak regularizer (small η) 
will modify the behavior of various quantities very little. In contrast, close to the phase 
boundary, and especially in the vicinity of the point α = 1, r = 0.5 , where the solution 
has an essential singularity, the eect of even a small η is very strong, and beyond the 
yellow region, where originally there was no solution, the regularizer will dominate the 
scene. In the region where the solution is stable even without the regularizer, r = N/T  
is small, which means we have an abundance of data. We call this region the data-
dominated region. In the presence of the regularizer we will find finite solutions also far 
beyond the phase boundary, but here the regularizer dominates the data, so we can call 
this domain the bias-dominated region.

3. Results

The solution of the stationarity conditions can be obtained with the help of a computer. 
In the following, we present the numerical solutions for the relative estimation error. 
The results will be displayed by constructing the contour map of this quantity, which 
will allow us to make a direct comparison between our present results and those in [24].

In figure 2 we recall the contour map of the relative estimation error of ES without 
regularization.

As can be seen, without regularization the constant q0 curves are all inside the 
feasible region. For larger and larger values of q0 the corresponding curves run closer 
and closer to the phase boundary, along which the estimation error diverges. Note that 
the phase boundary becomes flat, with all its derivatives vanishing, at the upper right 
corner of the feasible region: there is an essential singularity at the point α = 1, r = 0.5.

The estimation error problem is very clearly illustrated in this figure: the curves 
corresponding to an acceptably small relative error are the lowest ones among the q0 
contour lines, and the value of r = N/T  corresponding to a confidence limit α in the 

https://doi.org/10.1088/1742-5468/aaf108
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vicinity of 1 (such as the regulatory value α = 0.975) are extremely small on these low 
lying curves. These small values of r require an unrealistically large sample size T  if N  
is not small. For example, at the regulatory value of α = 0.975, to achieve an estima-
tion error smaller than 5%, for a portfolio with N = 100 assets one would need a time 
series of more than 7200 data points [24].

Let us see how regularization reorganizes the set of constant q0 curves. Figures 3 
and 4 display these curves for two dierent values of the coecient η of the regularizer. 
(Notice the logarithmic scale on the vertical axes in these figures.)

The curves of constant q0 have two branches now. For a given q0 the lower branch 
lies mostly or partly in the previously feasible region, the upper branch lies outside, 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

α

r

Figure 1. The phase boundary of unregularized ES for i.i.d. normal underlying 
returns. In the region below the phase boundary the optimization of ES is feasible 
and the estimation error is finite. Approaching the phase boundary from below, 
the estimation error diverges, and above the line optimization is no longer feasible.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

α

r

1.05

1.1

1.2

1.35

1.5

1.75

2

2.5

5

10

1

contours of fixed q0

Figure 2. Contour lines of fixed 
√
q0  in the absence of regularization. These curves 

are also the contour lines for the relative error for the out-of-sample estimate of 
ES.
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above it. Along the lower branch the value of the ratio r is small, which means we have 
very large samples with respect to the dimension: this is the data-dominated regime. 
We can also see that when the data dominate, the dependence on the regularizer is 
weak: the set of curves inside the yellow region is quite similar in the two figures, even 
though the regularizer has been increased 5-fold from figure 3 to 4. Following the curve 
corresponding to a given value of q0, say the black one, we see that at the beginning it 
is increasing with α, in the vicinity of α = 1 it starts to decline, then it sharply turns 
around and shoots up steeply, leaving the feasible region and increasing with decreas-
ing α. Along this upper branch the ratio r is not small any more. We do not have 
large samples here, in fact, the situation is just the opposite: the dimension N  becomes 
larger than the size T  of the samples. Clearly, in this regime the regularizer dominates 
and the data play only a minor role: this is the bias-dominated regime. It is interesting 
to note the sudden turn over of the constant q0 curves in the vicinity of α = 1. Such a 
sharp feature would be extremely hard to discover if we wanted to solve the original 
optimization problem by numerical simulations: the simulation would jump over to 
the upper branch before we could observe the sharp dip and the identification of the 
boundary between the data-dominated and the bias-dominated regimes would be hard. 
This is even more so for real life data which are inevitably noisy.

An important point in regularization is the correct choice of the parameter η. 
When data come from real observations, and the size of the sample (or the number 
of samples) is limited by time and/or cost considerations, the standard procedure is 
cross validation [27], i.e. using a part of the data to infer the value of η and checking 
the correctness of this choice on the other part. In the present analytical approach we 
have the luxury of infinitely many samples to average over, so we can obtain the value 
of the coecient of regularization by demanding a given relative error (that is a given 
q0) for a given confidence limit α and given aspect ratio r = N/T . Figure 5 displays 
the plot of the given estimation error curves on the r − η plane for the specific value of 
α = 0.975 demanded by the new market risk regulation [1], and relative errors of 1%, 
5% and 10%, respectively. It shows the change-over between the data-dominated resp. 
bias-dominated regimes very clearly. For a given value of r the corresponding value 

0 0.5 1
10−5

10−3

10−1

101

103

105

α

r

1.015

1.05
1.1
1.2
1.5
2

5

10

η = 0.01

Figure 3. Contour plot for fixed values of 
√
q0  on the α− r plane at η = 0.01.
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of η can be read o from the curves. If r is small (i.e. the sample is large with respect 
to the dimension) the curves with the prescribed values of relative error are almost 
horizontal. This means that when we have sucient data the value of the regularizer 
is more or less immaterial: within reasonable limits we can choose any coecient for 
the regularizer, it will not change the precision of the estimate, because in this situa-
tion the data will determine the optimum. Conversely, when the data are insucient 
(r is not small, or it is even beyond the feasible region), the value of η necessary to 
enforce a given relative error strongly depends on r. In this region, however, we need 
a smaller and smaller η to find the same relative error, because here the data almost 
do not matter and even a small regularizer will establish the optimum. The transition 
between these two regimes takes place around the points where the curves turn back. 
This happens still inside the feasible region, and the width of this range is rather small: 
from the r value corresponding to η = 0 to the one where the curves turn around the 
increase of r always remains within a factor of about 4.

Let us take a closer look at that part of the previous figure where the curves turn 
around and r starts to increase. Figure 6(a) shows this region in higher resolution. For 
a given, small, value of the estimation error (such as 1% or 2%), r grows by a factor 
of about four by the time we reach the elbow of the curves (at rather large η values). 
This means that for a given sample size T  the regularization allows us to consider a 
four times larger portfolio without increasing the estimation error. Conversely, for a 
given value of N  the regularizer allows the use of four times shorter time series without 
compromising the quality of the estimate. Of course, the growth of r could be followed 
beyond the elbow, up to higher values along the constant q0 curves, but it must be 
clear that these sections of the curves correspond to a situation where the estimate is 
mostly or entirely determined by the regularizer. This is also shown by the fact that the 
curves of given estimation error strongly lean backwards to the vertical axis: where the 
dimension is high and the data few even a weak regularizer can stabilize the estimate, 
but it will then have nothing to do with the information coming from the time series.

0 0.5 1
10−5

10−3

10−1

101

103

α

r

1.015

1.05
1.1
1.2

1.5
2

5

10

η = 0.05

Figure 4. Contour plot for fixed values of 
√
q0  on the α− r plane at η = 0.05.
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A gain of a factor four in the allowed region in r could be regarded as very satisfac-
tory, were it not for the fact that the initial (η = 0) value of r along the small estima-
tion error curves is so small that it remains small even after a multiplication by 4.

0.001 0.010 0.100 1.000

0
2

4
6

8
10

η

r 5% 1%10%

Figure 5. The overall behavior of the contour lines of fixed estimation error (fixed 
q0) on the r = N/T − η plane, for a given value of the confidence limit α = 0.975 
and for three dierent values (1%, 5% and 10%) of the relative estimation error. 
The data-dominated and bias-dominated regions correspond to the two branches 
of these curves: in the range of small r’s the curves depend on the strength of the 
regularizer very weakly, while for r’s in the vicinity of the phase boundary, and 
even more for large r’s high in the originally unfeasible region, the fixed estimation 
error curves display a strong dependence on η.
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Figure 6. (a) The previous figure in higher resolution (left). (b) The same as the 
left figure, but the r(η) curves normalized by their initial values r0 corresponding 
to η = 0 (right). It can be seen that the gain in r is about a factor 4.
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If we inspect another curve, corresponding to a larger estimation error (say, 5%), we 
can see that it turns back for a much smaller η, but the relative increase of r up to the 
elbow is still about a factor 4. We can also see that beyond this point the curves very 
quickly reach the region where the regularizer dominates.

Figure 6(b) displays the same curves as in figure 6(a), but this time they are nor-
malized by their vales at η = 0, so that they show the gain in r due to the regularizer.

4. Conclusion

We have considered the problem of optimizing ES in the presence of an �2 regular-
izer for the case of uncorrelated Gaussian returns. The regularizer takes care of the 
large sample fluctuations and eliminates the phase transition that would be present 
in the problem without regularization. Deep inside the feasible region, where we have 
a large amount of data relative to the dimension, the size of the sample needed for 
a given level of relative estimation error is basically constant, largely independent of 
the regularizer. In the opposite case, for sample sizes comparable to or small relative 
to the dimension, the regularizer dominates the optimization and suppresses the data. 
The transition between the the data-dominated regime and the regularizer-dominated 
one is rather narrow. It is in this transition region where we can meaningfully speak 
about a trade-o between fluctuation and bias, otherwise one or the other dominates 
the estimation. The identification of this transitional zone is easy within the present 
scheme, where we could carry out the optimization analytically: the transitional zone is 
the small region where the curves in figure 5 sharply turn back, but still remain inside 
the originally feasible region. In real life, where the size of the samples can rarely be 
changed at will and where all kinds of external noise (other than that coming from the 
sample fluctuations) may be present, the distinction between the region where the data 
dominates and where the bias reigns may be much less clear, and one may not be sure 
where the transition takes place between them. Below this transition there is not much 
point in using regularization, because the data themselves are sucient to provide a 
stable and reliable estimate. Above the transition zone it is almost meaningless to talk 
about the observed data, because they are crowded out by the bias. The identification 
of the relatively narrow transition zone between these two extremes and the gain of a 
factor four below the transition are the main results of this paper.

It is important to stress that the results we presented in this paper have been 
obtained under the simplifying assumption that asset returns are i.i.d. Gaussian vari-
ables. This was done partly for consistency with previous work [13–17], but, more 
importantly, for mathematical convenience, as under this assumption it is relatively 
easy to provide an analytical characterization of the problem. With respect to real mar-
ket data the assumption is unrealistic for two reasons: first, the distribution of returns 
is known to be dierent from a normal distribution, it displays fat tails, although with 
the general acceleration of trading the convergence to the Gaussian is becoming faster, 
especially on the time scales relevant for portfolio rebalancing. Second, the market is 
characterized by a non-trivial structure of correlations between assets, with modes rep-
resenting the movement of the market as a whole and of the dierent market sectors. 
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Relaxing the assumption of normality cannot be easily accommodated in the replica 
calculation, however it is not expected to change dramatically the results discussed in 
the paper. This was for instance shown in [24], where the non-regularized problem was 
studied by means of numerical simulations for the case of uncorrelated returns distrib-
uted according to a student’s t-distribution and it was shown that the critical line was 
the same as for the case of Gaussian variables. Introducing correlations between assets 
would also not change the qualitative features discussed in the paper: the regularizer 
would still prevent the divergence of the estimation error, and we would still observe 
a data-dominated region, where the eect of regularization is negligible, and a region 
where the solution of the optimization problem is dominated by the regularizer, where 
data play little role. However, the gain in performance due to the regularizer and the 
width of the transition region may in general depend on the details of the correlation 
structure. This will be the subject of future work.

Finally, it is important to realize that the cause of the relatively narrow transition 
region we identify is the same as that of the strong fluctuations, namely the unbounded 
loss function. Expected shortfall is not the only risk measure to have this deficiency: all 
the downside risk measures have it, including VaR. The preference for downside risk 
measures is explained by the fact that investors (and regulators) are not afraid of big 
gains, only of big losses. Perhaps they should be. Refusing to acknowledge the risk in 
improbably large gains is a Ponzi scheme mentality. Downside risk measures embody 
this mentality. As a part of regulation, however, they acquire an air of undeserved 
respectability, at which point the associated technical issues become components of 
systemic risk.
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