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“Only when they must choose between competing theories  

do scientists behave like philosophers.” (Thomas S. Kuhn) 

Introduction 

The social sciences are full of relatively complex theories that involve direct and indirect 

causal pathways. For example, Rivera and Tilcsik’s (2016) survey experiment tested whether 

higher class signals in résumés, mediated by the applicants’ perceived fit and commitment to 

the job, influenced whether the respective male or female participant was invited for an 

interview, using multi-group linear structural equation modelling (SEM) to examine the indirect 

(mediated) effects. Many social scientific researchers – especially those in sociology, 

psychology and criminology – rely on linear SEMs for testing theories of similar complexity, 

and this technique has several advantages in that, for example, it provides global and (in some 

cases) comparative model fit estimates and permits simultaneously the fitting of complicated 

measurement and structural models without aggregation of measurement error (e.g., Kaplan 

2008; Tomarken and Waller 2005). Linear SEMs can also be expanded to accommodate data 

structures of a multilevel and/or longitudinal nature. A further testament to the popularity of 

linear SEMs is that the two most cited articles in Sociological Methods & Research (Bentler 

and Chou 1987; Browne and Cudeck 1992) were also written on this very subject. 

For the social sciences to accumulate a robust body of knowledge that provides credible 

policy prescriptions, researchers need to test the causality of their often times relatively 

convoluted models. But many researchers seem – on the surface at least – to be unaware of the 

difficulties within such endeavours. Rivera and Tilcsik’s (2016) article is commendable, as it 

attempted to causally assess their hypotheses, but they did not test the causal identification 

assumptions of SEM (Bollen and Pearl 2013; Keele 2015b), nor did they draw upon the 

methodological literature on causal mediation analysis (Keele 2015a; VanderWeele 2015, 

2016). As emphasised by Kenny (2008), mediation analysis is a form of causal analysis where 
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disregarding the underlying causal assumptions can lead to misspecified models and thus 

misleading results. 

To address these difficulties, this paper examines the methodological challenges within and 

potential of causal mediation analysis with multiple mediators. Presenting some causal 

alternatives to linear SEMs, it draws upon papers by De Stavola et al. (2015) and Daniel et al. 

(2015), both of which use SEM with g-computation to consider statistical issues of post-

treatment confounding and causal ordering in causal mediation analysis. Here, these two 

techniques are discussed with a focus on the interpretation of the results and necessary 

identification assumptions (for technical details regarding the estimation and modelling, please 

see the cited papers) and, as a motivating example, the theory of procedural justice policing is 

used (Tyler 2006; Jackson et al. 2012). This paper provides a comprehensive overview of the 

different approaches available for causal mediation analysis with multiple mediators and goes 

beyond a recent publication on causal mediation analysis (VanderWeele 2015); both techniques 

considered here were devised contemporaneously to this book’s publication. The 

aforementioned two methods improve upon the traditional linear SEM approach in at least two 

ways: (1) they rely on the potential outcome framework as a rigorous tool to make the causal 

identification assumptions explicit, and devise formal definitions of the direct and indirect 

effects and (2) these methods allow for more flexible modelling by loosening some of the 

parametric requirements, thus providing weaker, and more attainable assumptions, than the 

ones required for linear SEM. 

This article is organised as follows. The first section focuses on a central prediction of 

procedural justice theory: namely, that people’s judgements on the legitimacy of the police 

mediate the effects of their perceptions of police procedural justice and legality on their 

willingness to cooperate with the police. Two experiments are outlined: the first manipulated 

the perceived procedural justice of the police, and the second manipulated the perceived legality 
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of the police. The second section discusses how linear SEMs traditionally derive mediated 

effects and highlights some of the potential pitfalls of this approach. The third section briefly 

reviews causal mediation analysis with a single mediator. The fourth section discusses the 

different approaches researchers can take when working with multiple mediators. The fifth and 

sixth sections discuss two particular instances of complex social scientific theories: mediators 

with post-treatment confounding and causally ordered mediators, and the findings from the two 

experiments are presented. The paper concludes with a consideration of the findings, an outline 

of some of the limitations of the methods, and some recommendations for applied researchers. 

Procedural justice policing and the legitimacy of the police 

The theory of procedural justice is built on the idea that when people evaluate their 

interactions with the police, they are primarily focussed on whether or not the officer (a) makes 

objective and neutral decisions, and (b) treats them in a fair and respectful manner. When the 

police act in procedurally just ways, citizens feel that their input is considered, their status in 

the community is affirmed, and that the police as an institution has legitimate authority 

(Mazerolle et al. 2013; Tyler 2006; Tyler, Goff, and MacCoun 2015; Tyler and Jackson 2014). 

In addition to procedural justice, the concept of ‘bounded authority’ has recently been 

introduced into the police legitimacy framework (Huq, Jackson, and Trinkner 2017; Trinkner, 

Jackson, and Tyler 2017). Bounded authority captures the idea that people expect authority 

figures to respect the limits of their rightful authority, for example, that police officers do not 

act as if they are above the law or do not become involved in situations that they have no right 

to be in. People divide their lives into domains, and in each of these domains they put a cap on 

how much interference from the legal authorities they can tolerate, and this boundary condition 

can shape their judgements on the legitimacy of that authority.  

Legitimacy judgements have two constitutive elements: the right to power and the authority 

to govern (Tyler 2006; Tyler and Jackson 2013). Applied to the police, right to power 
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judgements can be operationalised as institutional trust (the belief that institutional actors can 

be trusted to wield their power appropriately, where trust constitutes the normative justifiability 

of power) or as normative alignment (the belief that institutional actors respect key societal 

norms regarding how they should behave, where normativity constitutes the normative 

justifiability of power). Authority to govern activates the moral duty to accept the right of the 

police to make decisions and dictate appropriate behaviour, prompting voluntary consent and 

obedience because of the source rather than the content (Bradford 2014; Tyler and Jackson 

2013). Even though the building blocks of legitimacy (normative alignment and duty to obey) 

are usually agreed upon, their relationship is sometimes debated: some argue that these two 

elements mutually reinforce each other (e.g., Hough et al. 2013) while others claim that 

normative alignment is a predictor of duty to obey (e.g., Huq, Jackson, and Trinkner 2017). A 

good deal of research (Tyler and Fagan 2006; Tyler et al. 2015; White, Mulvey, and Dario 

2016) has shown that legitimacy has an impact on certain socially desirable outcomes, and 

among these outcomes, willingness to cooperate with the police is the focus of this paper. 

To test procedural justice theory, two experiments manipulate people’s perceptions of 

procedural justice or the legality of the police through descriptions of fake police encounters. 

Study 1 (n=215) and Study 2 (n=235) were conducted in July 2013 in two subsequent weeks 

on the Amazon Mechanical Turk website with participants from the United States. Both studies 

used a similar newspaper article about police roadside checks, manipulating either the perceived 

procedural justice or legality of the police. It is assumed here that procedurally unjust and illegal 

treatments have a negative impact on how people form their attitudes about police legitimacy, 

which in turn transmits their impact on willingness to cooperate with the police. 

Procedural justice of the police, legality of the police, normative alignment with the police, 

obligation to obey the police, and willingness to cooperate with the police were measured with 

three items each on a 1-5 Likert-scale almost exclusively with construct-specific response 
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alternatives. Gender, age, ethnicity, and state of origin were also measured. For further details 

regarding the experiments and procedure please refer to Appendix/A. 

Structural equation modelling and the traditional definition of indirect effects 

Throughout this paper SEM refers to the traditional linear models that most researchers 

use, rather than certain recent developments in the field that have yet to become standard (e.g., 

Liu et al. 2014; Mayer et al. 2017; Sardeshmukh and Vandenberg 2016). SEM conventionally 

relies upon the product method (Baron and Kenny 1986) to estimate mediated effects. Let us 

assume that we have a treatment (T) that channels its effect (partially) through a mediator (M) 

for the outcome (Y). The direct effect is T’s unmediated impact on Y; the mediated effect is the 

product of the estimates for T’s effect on M and M’s effect on Y. Therefore, the name of the 

product method refers to how the point estimate of the mediated effect is derived. Crucially, the 

presence and absence of direct and indirect effects is determined by the significance of the 

effects, although effect sizes should still be considered even in case of non-significant 

coefficients. 

Despite the widespread appeal of this approach, the product method has four limitations. 

First, SEMs posit effect homogeneity, that is, that every unit in the population has the same 

causal effect. This is an untestable and unrealistic assumption on the population level, as it must 

pertain to each individual (Robins and Greenland 1992). Second, the product method can only 

identify the total effect as the sum of the direct and indirect effects in the absence of a treatment-

mediator moderated effect that would influence the outcome (no-interactions) (Imai et al. 2011; 

Imai, Keele, and Yamamoto 2010). The presence of such a treatment-mediator interaction 

would be a clear sign that effect homogeneity is violated (Kline 2015). However, even if the 

effect homogeneity assumption can be relaxed, it remains unclear where to assign the 

interaction effect. This leads to the failure of the decomposition and makes the direct and 

indirect effects inextricable (Mackinnon 2008; Mackinnon, Kisbu-sakarya, and Gottschall 
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2013). A third limitation is that the product method requires the linearity assumption, which 

should apply not only to the outcome variable but to all variables including the mediator(s) (Jo 

2008). This linearity assumption guarantees effect constancy, that is, that the effect of one 

variable on another will be independent of the level of a third variable. Conversely, in non-

linear systems the chosen level of M would influence the effect of T on Y, thus prohibiting the 

additivity of effects (Pearl 2014). 

The final limitation concerns not the method itself, but its application. Users of SEM often 

hope to answer causal questions, and one of the key assumptions to guarantee this is that there 

are no omitted influential variables (i.e., unmeasured confounders). Yet, even if the treatment T 

is randomly assigned, only the T-Y and T-M relationships are randomised, while the M-Y 

relationship is not. Rivera and Tilcsik’s (2016) study is instructive here. They assumed that the 

randomised treatment’s mediated effects can be deemed causal, when in fact, the effects might 

be influenced by an unmeasured confounder1 (Judd and Kenny 1981; VanderWeele 2015).  

A brief review of causal mediation analysis with a single mediator 

Causal mediation analysis with a single mediator helps to address the limitations mentioned 

earlier by making the casual identifying2 assumptions more explicit. Moreover, it also helps to 

overcome them by permitting non-parametric identification and incorporating the treatment-

mediator interaction whilst still allowing the decomposition of effects. For the new definitions 

of direct and indirect effects the potential outcome framework can be used. At the heart of this 

framework is a thought experiment in which (assuming a binary treatment for the sake of 

simplicity) a person receives both the treatment and control simultaneously at the same point in 

time. Naturally, a person can only receive one of these conditions and we can never observe 

what would have happened had this person been assigned to the other condition. Nevertheless, 

provided that the preconceived assumptions are satisfied, the two outcomes are estimable on 

the population level. The potential outcome framework treats certain counterfactual values as 
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missing, and the only way to address this missingness is to rely on identifying assumptions 

regarding these unobservable quantities (Keele 2015b; Westreich et al. 2015). If these 

identifying assumptions are met, they will permit the estimation of population level causal 

effects3.  

For causal mediation analysis, the sequential ignorability assumption4 was proposed (Imai, 

Keele, and Tingley 2010; Imai, Keele, and Yamamoto 2010; Pearl 2001). This states that for a 

treatment T, a mediator M, and an outcome Y with T=t and M=m and controlling for a vector 

of pre-treatment covariates C, there is: 

i. No unmeasured confounding of the T-Y relationship or Ytm╨T|C 

ii. No unmeasured confounding of the M-Y relationship also given T or Ytm╨M|C,T 

iii. No unmeasured confounding of the T-M relationship or Mt╨T|C 

iv. No unmeasured M-Y confounder L that was affected by T or Ytm╨Mt*|C 

As indicated earlier, random assignment of T only satisfies (i) and (iii) from the four 

assumptions. The first three assumptions are conventional ‘no unmeasured confounding’ 

assumptions, while the fourth invokes the ‘cross-world independence’ assumption where t and 

t* stand for two values of the treatment we wish to compare (e.g., in case of a binary treatment 

t=1 is the treatment and t*=0 is the control). Crucially, this cross-world independence 

assumption also prescribes that there can be only a single mediator affected by the treatment 

(no post-treatment confounder L). 

The sequential ignorability assumption permits the definition of new effects. Overall, the 

conditional expectations for a particular outcome will take the form of E[Yt,M(t*)] where t and 

t* are set at a freely chosen level of the treatment for Y and M. The controlled direct effect 

(CDE) only requires assumptions (i) and (ii), and considers a specified value of M=m and 

captures the expected increase in Y when T changes from T=0 to T=1. This is a direct effect, 
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since the effect of T is not transmitted through M. The value of CDE might change depending 

on the chosen value of m: 

(1)    CDE(m)=E[Y(1,m)-Y(0,m)] 

Both natural effects require all assumptions (i-iv) to be estimable. The natural direct effect 

(NDE) is similar to the controlled direct effect, as it estimates the expected increase in Y when 

T changes from T=0 to T=1, but it does not hold m constant; instead it permits m to take its 

value in the ‘natural’ way for each individual as if that individual had been assigned to the 

control condition: 

(2)    NDE=E[Y(1,M(0))-Y(0,M(0))] 

The natural indirect effect (NIE) does the opposite of NDE as it approximates the expected 

increase in Y when the treatment is kept at T=1, while M is freed to take its natural value of m 

for the treatment and the control group respectively. This is an indirect effect that captures the 

effect of T on Y that is transmitted through M: 

(3)    NIE=E[Y(1,M(1))-Y(1,M(0))] 

Finally, the total effect (TE) can be decomposed to the sum of the NDE and NIE: 

(4)    TE=E[Y(1)-Y(0)]= 

     {E[Y(1,M(1))-Y(1,M(0))]}+ 

     {E[Y(1,M(0))-Y(0,M(0))]}= 

     NIE+NDE 

As described above, identification of the direct and indirect effects through the potential 

outcome framework does not posit the no-interaction assumption, which allows for the effect 

decomposition even in the presence of such an association. Moreover, it is non-parametrically 

identified, hence it does not require the effect homogeneity or linearity assumptions, either of 

which permits more flexible modelling. For an example of how these effects are estimated using 

g-computation, please refer to Appendix/B. 
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Causal mediation analysis with multiple mediators 

As with SEMs, causal mediation analysis always starts with a qualitative stage of model 

building. This stage is inherently theoretical – as alluded to in the quote at the beginning of this 

article – with the researcher distilling knowledge about prior scholarship, the research design, 

and potential temporal order to logically structure the theoretical model (Bollen and Pearl 

2013). As expressed by (iv), if more than one mediator is present, the sequential ignorability 

assumption might be violated, threatening the identifiability of the NDE and NIE. Thus, in the 

presence of multiple mediators, there are four different strategies an analyst can consider: 

assume causal independence, model the joint effects, assume post-treatment confounding, or 

assume sequential ordering. The decision regarding the appropriate strategy cannot be data-

driven, it has to be informed by the researcher’s knowledge regarding the existing literature. 

FIGURE 1 COMES SOMEWHERE HERE 

When mediators are causally independent of one another (i.e., parallel or non-intertwined) 

the same analytical strategy can be pursued as with a single mediator. Notably, this causal 

independence is an untestable assumption that makes it difficult to assess whether Figure1 (a) 

or (b) is more suitable for the constructs analysed. Nonetheless, an obvious way of examining 

the potential dependence between variables is to regress T, C, and L on the M of interest. 

Significant relationships can provide a reasonable indication that the variables are dependent 

on each other (Imai & Yamamoto, 2013). However, even if no statistically significant 

association emerges, it is usually difficult to argue for the orthogonality of the mediators, unless 

there is a convincing theoretical reason to do so, or such orthogonality is artificially created 

(e.g., through varimax rotation in exploratory factor analysis). A rare example of such 

independence was provided by Taguri, Featherstone, and Cheng (2018), who examined two 

unrelated techniques to prevent dental cavities, through antibacterial and fluoride therapy 

mediators. Nevertheless, it is usually difficult to encounter such clear-cut cases in the social 
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sciences. Finally, assessing the mediators one at a time will also fail if there are interactions 

between the effects of the various mediators on the outcome (Lange, Rasmussen, and Thygesen 

2014). 

Assuming causal dependence between L and M, a simple solution is to examine their joint 

effect and treat them as a vector of mediators (Steen et al. 2017b; VanderWeele and 

Vansteelandt 2014). Importantly, L and M are statistically equivalent, the post-treatment 

confounder label of L is only substantive, hence, L can be considered as a second mediator. 

Handling multiple mediators as a single vector is robust to unmeasured common causes of 

various mediators, and can even accommodate cases with causal ordering of M1 and M2 similar 

to Figure1 (c). Crucially, the sequential ignorability assumption (i-iv) is still valid, but now for 

a vector of mediators instead of a single mediator. Admittedly, this approach limits the scope 

of the analysis, yet it can be pragmatic for certain research questions (e.g., if we are only 

interested in the mediated effects of legitimacy as a whole on the outcome of interest). Even so, 

for many applied cases this technique will remain untenable. For instance, it would be hard to 

justify this approach in Rivera and Tilcsik’s (2016) study where the commitment and fit for a 

job are fairly different aspects. Similarly, this strategy would not allow one to test the unique 

impact of moral alignment with the police and duty to obey the police. In such circumstances, 

assuming causal mediation analysis with post-treatment confounders or sequentially ordered 

mediators need to be considered, which will be discussed in the next two sections. 

Causal mediation analysis with post-treatment confounding 

Avin, Shpitser, and Pearl (2005) in their proof showed that conditioning on L does not 

permit the non-parametric identification of natural effects, but only the CDEs (for which 

assumption (i) and (ii) are sufficient enough). The biggest issue in the presence of causally 

dependent L is that testing the mediators one at a time will no longer be viable because this 

results in counting certain causal pathways more than once (VanderWeele and Vansteelandt 
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2014). A further problem emphasised by some (Daniel, De Stavola, and Cousens 2011) is that 

the direct effect of T on Y will not estimate consistently if there is an uncontrolled post-

treatment confounder L that opens a backdoor path of T → L → Y. A seemingly easy fix to this 

problem is to condition for L as well. However, since L was affected by T controlling for L in 

the model for M, this blocks the T → L → Y path, which will also result in biased estimates for 

the NDE and NIE5. This means that neither the inclusion nor the exclusion of L will solve the 

problem of identifiability. 

Thus, to address these issues we require a refined – and relaxed – sequential ignorability 

assumption to make the NIE and NDE identifiable. Crucially, these alternatives do not 

contradict Avin et al. (2005), but introduce additional assumptions to make the natural effects 

estimable. While several alternative sets of identifiability criteria have been established 

(Tchetgen Tchetgen and VanderWeele 2014), the one postulated by De Stavola et al. (2015) 

will be discussed here. De Stavola et al. (2015) modified the definition of Imai and Yamamoto 

(2013), positing that sequential ignorability in the presence of post-treatment confounder L 

holds when controlling for pre-treatment covariates C when there is: 

v. No unmeasured confounding of the T-Y, T-M, and T-L relationship or (Ytml Mtl Lt)╨T|C 

vi. No unmeasured confounding of the M-Y relationship also controlling for T and L or 

Ytml╨M|C, T, L 

vii. No unmeasured confounding of the L-Y relationship also controlling for T or Ytl╨L|C, 

T 

viii. No unmeasured M-Y confounder Z  that was affected by T or Ytm╨Mt*|C, L 

These assumptions are analogous to (i-iv). Assumption (v) is satisfied in the case of a 

random assignment of T, while (vi) makes the mediated effect conditional on L. Assumption 

(vii) stresses that there cannot be any unmeasured confounder for the L-Y relationship, which 

is again a strong assumption similar to (ii). Finally, (viii) establishes that there cannot be any 
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post-treatment confounder Z that was not included in L (i.e., all post-treatment confounders – 

in other words, alternative mediators – are measured). 

Under assumptions (v-vii) the NDE and NIE are identifiable with a few additional 

limitations. Firstly, the analyst needs to rely on the linearity assumption, which permits the 

additivity of the effects. Secondly, it needs to be assumed that there is no significant T-M 

interaction for Y (Robins and Greenland 1992) or that both the T-L interaction and L2 are zero 

in the model for Y (Petersen, Sinisi, and van der Laan 2006). Importantly, this second modelling 

assumption is a loosened version of SEM’s effect homogeneity assumption that only needs to be 

true on average, not for each individual, thus it can be empirically assessed (Imai and 

Yamamoto 2013). Crucially, and as demonstrated by De Stavola et al. (2015), when these 

parametric assumptions are met, (vii) is automatically satisfied. 

Provided that the model is identifiable, a generalised structural equation model needs to be 

specified with L modelled on C and T, M modelled on C, T, and L, and Y modelled on C, T, L, 

and M. In addition, the interaction between T and L is entered in the model for both M and Y, 

and the squared transformation of M and L in the model for Y to control for potential quadratic 

and heterogeneous effects in line with the earlier identification assumptions6. Then, a 

generalised version of the product method is used to obtain the parameters. G-computation of 

the causal estimates for NDE and NIE can be accomplished by combining these appropriate 

parameters from the SEM through estimation by combination. Unfortunately, with more 

complex models this mathematical integration can become exceedingly cumbersome with 

potential issues of convergence. To overcome this difficulty, Monte Carlo simulation is used as 

a more flexible and efficient way to approximate the integration, whilst the standard errors and 

confidence intervals are bootstrapped (Daniel et al. 2011). As acknowledged by De Stavola et 

al. (2015), the results of this approach will coincide with a traditional SEM, provided that there 
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are no interactions or nonlinear terms of M, L, or T (for the equations discussed in this paragraph 

please refer to Appendix/C). 

Finally, it is crucial to assess the robustness of the M-Y relationship to potential 

unmeasured confounding. De Stavola et al. (2015) devised a sensitivity analysis based on Imai 

et al.'s (2011) method that can be applied in the presence of post-treatment confounders. This 

refined method fits a SEM which allows for the error terms of the models for Y and M to 

become correlated7. These error terms are very instructive as they incorporate the impact of the 

unmeasured confounders. This method regresses L on X and C, M on L, X, and C, and Y on X, 

L, and C. M is not included in the model for Y as to do so would induce collinearity. Then the 

error terms from the model for M and Y are systematically correlated, where ρ’ provides an 

indication of how big the correlation must be between the two error terms to make the M-Y 

relationship zero. A confidence interval for ρ’ can also be obtained with bootstrapping. 

Preliminary remarks 

Confirmatory factor analysis was used to derive factor scores for the respective constructs 

in both studies. These factor scores were entered in the causal mediation analysis. Although this 

strategy might have resulted in increased measurement error bias compared to using latent 

variables to capture multiple indicators (Loeys et al. 2014), the reliance on latent variables, their 

interactions and transformations (i.e., squared-forms) would have added to the computational 

complexity and prolonged the already fairly long estimation time. Moreover, the concepts and 

definitions of causal effects only apply to the structural model, not the measurement models. 

Thus for pragmatic reasons, factor scores were used instead of latent variables to demonstrate 

the use of causal mediation analysis with multiple mediators. 

All analyses in this paper were carried out using STATA 14 and its multicore (MP) version 

with g-computation models relying on 100,000 Monte Carlo simulations and the number of 

bootstraps set to 300. The cap on the number of bootstraps was placed so that the analysis would 
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mirror a realistic application, as causal mediation analysis with post-treatment confounding can 

be particularly time-consuming. With the current specification it takes five days with a regular 

office computer and a single core, and two days with a cluster computer and six cores to obtain 

results. The estimation of causal mediation analysis with sequentially ordered mediators is 

speedier, taking a matter of minutes. 

TABLE 1 COMES SOMEWHERE HERE 

Test of identification 

Two linear regression analyses were fitted for cooperation for the two studies. In both cases 

the treatment, the covariates (gender, age, ethnic minority background) and the two potential 

mediators, their quadratic transformation, and their interaction with the treatment were included 

(Table 1). As discussed earlier, including these additional parameters in the regression models 

for the respective Y and examining their significance helps in determining which identification 

strategy – if any – is relevant for a particular model. However, as noted by VanderWeele 

(VanderWeele 2015; VanderWeele and Knol 2014), strong statistical power is usually needed 

to discover interactions, therefore it is worth also examining effect sizes, especially with smaller 

sample sizes. In this paper, the sample sizes are moderate and the effect sizes are relatively 

uneqivocal, which means that considering the statistically significant effects should be 

sufficient. 

For Study 1 either identification strategy (Petersen et al. 2006; Robins and Greenland 1992) 

should suffice as neither the interactions, nor the quadratic terms are significant. However, for 

the second study, neither will be appropriate, as there are moderately strong and significant 

interactions between the treatment and both mediators. The NDE and NIE can still be estimated, 

but they have no meaningful interpretation, thus they are not included in the results table (Table 

2). Nevertheless, the TE is always estimable, as well as the CDE(m), provided that assumptions 

(v) and (vi) are satisfied. 
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Results for causally dependent mediators 

As discussed earlier, some scholars (e.g., Hough et al. 2013) believe that the two aspects 

of legitimacy, moral alignment and duty to obey, mutually reinforce each other. In the SEM 

literature this is depicted using a bidirectional arrow that denotes a correlation between the 

constructs. By contrast, the causal inference literature utilises directed acyclic graphs (DAGs), 

which do not allow two-headed arrows as to do so would create a cycle. Hence, when mutual 

reinforcement is hypothesised two graphs are created for the two different causal directions 

(Figure 2 (a) and (b)). 

FIGURE 2 COMES SOMEWHERE HERE 

In causal mediation analysis with post-treatment confounding the NIE incorporates the 

mediated effect of the mediator of interest (including L’s impact on M) and the NDE the effect 

of the treatment not going through M (including L’s impact on Y). In Study 1 (Table 2) 

procedural justice treatment has a significant positive effect (NDE=0.254, p<0.01) and a 

significant mediated effect through moral alignment with the police (NIE=0.215, p<0.001), 

which carries approximately 46% of the total effect. The sensitivity analysis indicates that on 

average a relatively strong correlation of ρ’=0.42 would be needed between the error terms to 

nullify the mediated effect with a 95% confidence interval of 0.301 and 0.545. Conversely, duty 

to obey the police has a weak non-significant impact on cooperation (NIE=0.043, p>0.05) and 

transmits only 9% of the total effect. The sensitivity analysis implies that on average a ρ’=0.199 

between the error terms could make the impact non-significant, but the confidence intervals 

show that a correlation of 0.047 might be enough to make the effect zero. Procedural justice 

has a strong and significant direct effect on willingness to cooperate (NDE=0.423, p<0.001). 

The estimates of CDE(m) and NDE are both within rounding error of each other in both cases, 

which is unsurprising given the absence of a treatment-mediator interaction, in which case they 

should approximately coincide (i.e., as a default the CDE’s m is always set at the average value 
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of the mediator, as this option allows the comparison to the NIE). Overall, it seems that moral 

alignment with the police has a fairly strong causally mediated effect on cooperation with the 

police, while duty to obey does not seem to have an impact. Receiving the procedural justice 

treatment also significantly increased the participants’ willingness to cooperate with the police. 

TABLE 2 COMES SOMEHWERE HERE 

For Study 2, only the CDE(m) and TCE were identifiable. For both moral alignment 

(CDE(m)=1.276, p<0.001) and duty to obey (CDE(m)=1.763, p<0.001) as mediators the 

controlled direct effect of legality was significant. Unfortunately, CDE(m) does not permit 

effect decomposition, thus no information can be gained regarding the mediated effects. Still, 

the CDE(m) was much higher than in Study 2, which implies that legal police practices might 

have an even stronger effect when the police are otherwise thought to overstep legal boundaries. 

Causal mediation analysis with sequentially ordered mediators 

Interdependence between mediators can take the form of a causal chain where the first 

mediator affects the second mediator and the outcome, but not the other way around. Crucially, 

this situation’s DAG takes the very same form as the post-treatment confounder case’s as shown 

in Figure 1 (b) and (c) where the difference between the two graphs is only substantive. The 

distinction between the two approaches becomes clearer looking at Figure 1 (d) and (e), which 

show that in the post-treatment confounder case L1 and L2 do not affect one another, while in 

the sequential case M1 and M2 do, following a pre-determined order. This difference in the 

causal structure leads to an alternative four-way decomposition in case of two mediators where 

there will be NIE1 standing for M1’s mediated effect on Y (T→M1→Y), NIE2 for M2’s mediated 

effect on Y (T→M2→Y), NIE12 for M1’s and M2’s jointly mediated effect on Y 

(T→M1→M2→Y), and NDE, T’s effect that does not go through either of the mediators 

(T→Y). Although there have been other approaches addressing causally ordered mediators 

(Steen et al. 2017a, 2017b), Daniel et al. (2015) has been the only paper so far to allow for this 



19 

 

finest four-way decomposition. As before, this new decomposition will require a modified set 

of sequential ignorability assumptions; controlling for pre-treatment covariates C, these are: 

ix. No unmeasured confounding of the T-Y, T-M1, and T-M2 relationship or  

(Ytm1m2 M2tm1 M1t)╨T|C 

x. No unmeasured confounding of the M1-Y relationship also controlling for T or 

Ytm1m2╨M1|C, T 

xi. No unmeasured confounding of the M2-Y relationship also controlling for T and M1 or 

Ytm1m2╨M2|C, T, M1 

xii. No unmeasured M1-Y, M1-M2 or M2-Y confounder L1 or L2 that was affected by T or 

Ytm1m2╨M1t*|C, M2tm1╨ M1t*|C, and Ytm1m2╨M2t**|C, M1t* 

When T is randomly assigned, (ix) will automatically be satisfied. (x) is analogous to (ii) 

and (xi) to (vi), while (xii) states again that there cannot be post-treatment confounders L1 or 

L2 that were affected by the treatment. As with the post-treatment confounder case, certain 

parametric restrictions are also needed. As earlier, the linearity assumption is required so the 

additivity of the effects is guaranteed. Furthermore, when M1 has a non-zero effect on M2 the 

conditional correlation between M1’s potential outcomes is required to make the effects 

estimable. However, this conditional correlation is unknown for several of the effects8, hence a 

sensitivity parameter κ2 is used, which stands for the proportion of residual variance shared 

across the two hypothetical worlds. κ2 can take values from 0 to 1, where 0 means no correlation 

between the potential outcomes conditional on C, and 1 means perfect correlation between the 

potential outcomes conditional on C (Daniel et al. 2015). 

Because of the second mediator, the conditional expectations take more complex forms: 

generally they are E[Y(t,M1(t
*),M2(t

**,M1(t
***)))], where the different t-s (i.e., t, t*, t**, t***) stand 

for setting the treatment to one of its possible values. This increased complexity also means that 

the number of possible decompositions of the total effect will be (2n)!, where n stands for the 
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number of mediators. In the case of two mediators, the 24 (i.e., (22)!=(4)!=(4x3x2x1)=24) 

possible decompositions are reduced to 6 when M1 does not affect M2. Overall, marked 

differences among the path-specific effects only emerge when there are significant T-M1 and T-

M2 interactions, which are allowed with the current technique. In the absence of interactions, 

the estimates will be approximately the same as SEM’s estimates, albeit with wider confidence 

intervals (Daniel et al. 2015). 

Because interpreting a high number of estimates from the different decompositions can be 

cumbersome, and usually not of particular interest, it is worth considering ways to summarise 

the effects. Based on earlier work (Kuha and Goldthorpe 2010), Daniel et al. (2015) 

recommended the usage of summary effects that are weighted averages of the NDE and various 

NIEs. In addition, they also advised reporting the variance estimates for these summary effects, 

which indicate whether there are large differences across the various decompositions. The 

major advantage of these summary effects is that they provide a good approximation of the 

respective effects, however it is hard to attach a substantive interpretation, which can prove 

problematic especially if the particular effect size on the outcome variable were directly 

interpretable and of particular interest. 

Results for sequentially ordered mediators 

In the procedural justice literature, other scholars (e.g., Huq, Jackson, & Trinkner 2017) 

have argued for the theoretical model depicted by Figure 2 (b), where duty to obey the police 

is influenced by moral alignment with the police, but not the other way around. The results 

(Tables 3-4) are presented conditionally only on the two extremes of the sensitivity value (κ2=0 

and κ2=1), as they appear to be mostly robust to these extremes. In the case of wider disparities, 

it is advisable to look at further values of the sensitivity parameter. 

TABLE 3 COMES SOMEWHERE HERE 
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The results from Study 1 (Table 3, Appendix Figure 3-6) show that moral alignment with 

the police has a moderately strong mediated effect (SNIE1
κ2=0=0.231, p<0.01, SNIE1

κ2=1=0.219, 

p<0.01) on willingness to cooperate with the police with 42-46% of the effect transmitted by it. 

In contrast, duty to obey does not have an impact on any conventional level of statistical 

significance (SNIE2
κ2=0=-0.01, p>0.05, SNIE2

κ2=1=-0.009, p>0.05). The joint effect of moral 

alignment with and duty to obey the police has a weak significant relationship with willingness 

to cooperate when κ2=0 (SNIE12
κ2=0=0.061, p<0.05), but it does not reach the 5% significance 

level when κ2=1 (SNIE12
κ2=1=0.038 p>0.05). Procedural justice treatment has a moderately 

strong effect on cooperation, but it does not reach statistical significance (SNDEκ2=0=0.218, 

p>0.05, SNDEκ2=1=0.273, p>0.05). Juxtaposing the results of the two extremes of the sensitivity 

parameter shows that when the counterfactual outcomes of M1 are assumed to be perfectly 

correlated, it slightly boosts the SNDE and widens its confidence intervals but at the same time 

reduces the mediated effects and narrows their confidence intervals. The variance estimates are 

tiny across the different effects, which is in accordance with the lack of interactions found 

earlier (Table 1). The absence of interactions also means that the indirect effects (IEs) from an 

SEM should be very close to the SNIEs which, as expected, they are. 

The findings from Study 1 seem to uphold moral alignment’s moderately strong mediated 

effect on willingness to cooperate while also confirming the lack of impact from duty to obey. 

The joint effect of the two mediators is either weak or non-existent while the direct effect of 

procedural justice does not reach statistical significance; a bigger sample size would be needed 

to elucidate the treatment’s and the joint effect’s impact on the outcome. 

The results from Study 2 (Table 4, Appendix Figure 7-10) show a similar pattern to Study 

1. Moral alignment with the police has a strong mediated effect (SNIE1
κ2=0=0.623, p<0.001, 

SNIE1
κ2=1=0.640, p<0.001) with 32% proportion mediated while duty to obey has a weak non-

significant one (SNIE2
κ2=0=0.081, p>0.05, SNIE2

κ2=1=0.081, p>0.05). Yet again the joint 
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mediated effect is either significant (SNIE12
κ2=1=0.184, p<0.05) or not (SNIE12

κ2=0=0.178, 

p>0.05), depending on the value taken by the sensitivity parameter. The direct effect of legality 

is much stronger in Study 2 than procedural justice’s in Study 1 with a statistically significant 

impact (SNDEκ2=0=1.085, p<0.001, SNDEκ2=1=1.085, p<0.001). The results are even less 

sensitive to changes in κ2 than in Study 1, and the perfect correlation between the potential 

outcomes of M1 here increases the effect sizes while decreasing the confidence intervals for all 

effects. The variance estimates are much higher than in Study 1, which is expected because of 

the interaction effects (Table 1). This also means that indirect effects conventionally obtained 

from an SEM will be different: in this case they are much smaller than the ones from causal 

mediation analysis. 

TABLE 4 COMES SOMEWHERE HERE 

Overall the results provide further support for the earlier findings. From the two 

components of legitimacy shared values (moral alignment) appears to be the important mediator 

of legality’s impact on cooperation while consent (duty to obey) does not seem to matter much. 

The joint effect of these two elements is very close to zero and requires further scrutiny. The 

strong direct effect indicates that procedurally just and legal messaging will have a powerful 

impact, especially when compared to the assumption that the police routinely overstep their 

boundaries. 

In summary, both the post-treatment confounder and sequentially ordered approach concur 

that moral alignment is the primary conduit of the effect of procedural justice and legality on 

willingness to cooperate, while duty to obey either does not have an effect or has only a weak 

joint one with moral alignment. The direct effect of the two treatment conditions also seemed 

to be important, even if not consistently significant between the two methods. These results are 

in line with earlier research (e.g., Moravcová 2016; Tyler & Jackson 2014), which found a small 

or even non-significant relationship between duty to obey and cooperation, and which thus 
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called into question its relevance. As with other experiments, the external validity of the results 

is limited and further studies are needed to attest to the effects found here. 

TABLE 5 COMES SOMEWHERE HERE 

Discussion 

Over the last couple of decades, many social science disciplines have relied primarily on 

SEM (and path analytical models more generally) for assessing complex theories. Yet, adopting 

the potential outcome framework provides at least three advantages (Daniel, Stavola, and 

Vansteelandt 2016; Greenland 2017; Steen et al. 2017a): 

• it makes explicit the identification assumptions needed to avoid model misspecification 

for the mediator(s); 

• it provides formal definitions of the estimated causal effects; and,  

• it devises ways to check for the robustness of the results through sensitivity analysis of 

certain causal identification assumptions9. 

This paper has argued that the traditional SEM framework has shortcomings that need to be 

addressed for more realistic identification and effect decomposition. In order to accommodate 

multiple mediated effects, parametric restrictions akin to SEM need to be made: linearity and 

relaxed effect homogeneity for the post-treatment confounder, and linearity for the causally 

ordered case (for a summary see Table 5). The similarity between the two approaches does not 

end there; traditional SEM can be considered a special case of causal mediation analysis when 

certain conditions apply. This means that SEM and causal mediation analysis can be easily 

reconciled, and that the estimation method will be very similar to each other, which makes such 

techniques easily understandable and adaptable for those who were primarily trained for SEM 

(Daniel et al. 2015; De Stavola et al. 2015). 

Study 1 and Study 2 exemplify how SEM compares to causal mediation analysis with 

multiple mediators. The results from Study 1 were approximately identical to the results one 
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would have derived using SEM. In contrast, for Study 2 the post-treatment confounder case 

was not identifiable, while the sequentially ordered mediator case differed decidedly from the 

SEM results. Study 1 highlights how traditional SEM can sometimes hit the mark, while Study 

2 illustrates that it can also fail. The sensitivity analysis from the different studies can help to 

determine whether the results are robust to certain conditions (unmeasured confounding or the 

correlation of certain potential outcomes). The reliance on these sensitivity measures can 

mitigate bad practices, like “p-hacking” and can help to identify spurious relationships and 

statistical flukes. This perspective also encourages researchers to adapt a priori model building 

since their decision will have a major impact on the modelling strategy employed, and because 

the causal structure can never be decided by relying on statistical methods. 

Nevertheless, there are certain limitations worthy of discussion. First, causal mediation 

analysis relies on very strong assumptions. Even in the case of a randomly assigned treatment, 

the M-Y relationship can be spurious unless a proper set of covariates is controlled for. In Study 

1 and Study 2 only three covariates (age, gender, and ethnic minority background) were 

considered, which are far from being sufficient (Steiner et al. 2010). The problem of no 

unmeasured confounding is further aggravated in observational studies where the treatment is 

not randomised. Some scholars have recommended conducting ‘comprehensive SEM’ 

(Mackinnon and Pirlott 2015) with up to fifty covariates, yet even in such cases it can be 

difficult to realistically argue for causal inference. Multiple mediators can even exacerbate this 

issue as it is more likely that at least one of them is affected by unmeasured confounding 

(VanderWeele 2015). 

As an alternative to natural effects, some have recommended the use of interventional 

effects (Vansteelandt and Daniel 2017), which require weaker causal identifying assumptions. 

However, these loosened assumptions posit additional parametric restrictions to the ones that 

have been discussed in this paper (e.g., fixing the mediator distribution). Arguably, these 
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alternatives can sometimes be more policy relevant (i.e., the interventional indirect effects are 

set at the levels of the potential interventions), but they provide less information regarding the 

causal mechanisms and hence are often times less generalisable to other contexts. 

Others are also critical of SEMs because of their restrictive parametric assumptions, which 

were (partially) adopted for causal mediation analysis in the current applications. VanderWeele 

has repeatedly insisted (VanderWeele 2012, 2015, 2016) that these modelling assumptions are 

too strong, and SEMs and similar methods should only be used for hypothesis generation not 

hypothesis testing. In addition, both Keele (2015a) and Kennedy (2015) have argued that 

because causal effects are non-parametrically identified, parametric models are more likely to 

yield misspecification and the use of semi- or non-parametric models is more advisable. 

Although such alternatives are available for multiple mediators (Kim, Daniels, and Hogan 2017; 

Moerkerke, Loeys, and Vansteelandt 2015; Tchetgen Tchetgen and VanderWeele 2014), they 

have other restrictions and limitations (e.g., particular types of outcome, constrained effect 

decomposition, Bayesian model-specification) that make them unappealing or hard to 

implement. 

Even if these criticisms are valid, most of the propositions made in this paper touch upon 

the fundamental limitations of SEM and can be considered as improvements upon it. For 

instance, the no-interaction assumption is a non-causal issue, yet applying a causal mediation 

perspective helps to address the matter. Similarly, the current methods allow to incorporate 

quadratic terms in the model, provide an alternative way to investigate cases when mediators 

are assumed to mutually reinforce each other, and propose sensitivity analysis for model 

assessment. In the end, causal mediation analysis provides a list to consider for causal analysis, 

a slightly modified estimation approach that allows for a more versatile model analysis and 

assessment, and provides a comprehensive improvement upon the traditional SEM. 
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Tables 
 Study 1 Study 2 

Moral alignment 0.368*** 

[0.193, 0.544] 

1.143*** 

[0.703, 1.583] 

Moral alignment2 -0.044 

[-0.144, 0.056] 

0.120 

[-0.018, 0.257] 

Moral al. X Treatment -0.037 

[-0.248, 0.174] 

-0.478*** 

[-0.699, -0.257] 

Duty to obey 0.193* 

[0.014, 0.373] 

0.570* 

[0.087, 1.107] 

Duty to obey2 -0.006 

[-0.101, 0.089] 

0.059 

[-0.075, 0.194] 

Duty to obey X Treatment -0.097 

[-0.324, 0.130] 

-0.365** 

[-0.647, -0.083] 

Treatment 0.282** 

[0.0822, 0.483] 

1.136*** 

[1.067, 1.648] 

Gender 0.096 

[-0.051, 0.243] 

0.117 

[-0.017, 0.252] 

Age (years) -0.003 

[-0.051, 0.243] 

-0.006* 

[-0.012, -0.001] 

Ethnic minority -0.207* 

[-0.374, -0.040] 

-0.111 

[-0.300, 0.077] 

Constant 0.014 

[-0.365, 0.392] 

-1.143** 

[-1.179, -0.497] 

N 215 235 

Table1 Test of identification for post-treatment confounding, 

linear regression analyses with 300 bootstraps 
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*p<0.05, **p<0.01, ***p<0.001, n.i.=not identifiable 

Table2 Causal mediation analysis with post-treatment confounding 

 using Robins and Greenland’s (1992) identification assumption 

  

 Cooperation 
Proportion 

mediated 
ρ’ 

Study 1 (n=215) 

Moral alignment NIE 
0.215*** 

[0.106, 0.325] 

46% 0.420 

[0.301, 0.545] 

Pj vs punj NDE 
0.254** 

[0.106, 0.403] 

  

Pj vs punj CDE(m) 
0.255** 

[0.107, 0.325] 

  

TCE 
0.470*** 

[0.289, 650] 

  

Duty to obey NIE 
0.043 

[-0.009, 0.095] 

9% 0.199 

[0.047, 0.354] 

Pj vs punj NDE 
0.423*** 

[0.255, 0.591] 

  

Pj vs punj CDE(m) 
0.423*** 

[0.256, 0.591] 

  

TCE 
0.466*** 

[0.285, 0.647] 

  

Study 2 (n=235) 

Moral alignment NIE 
n.i. 

 

  

Legal vs illegal NDE 
n.i. 

 

  

Legal vs illegal CDE(m) 
1.276*** 

[0.872, 1.681] 

  

TCE 
1.755*** 

[1.253, 2.256] 

  

Duty to obey NIE 
n.i. 

 

  

Legal vs illegal NDE 
n.i. 

 

  

Legal vs illegal CDE(m) 
1.763*** 

[0.123, 2.296] 

  

TCE 
1.852*** 

[1.314, 2.390] 

  



35 

 

Study 1 (n=215) Cooperation Cooperation 
Proportion 

mediated 

Sensitivity parameter (κ2) =0 =1 =0-1 

Moral alignment SNIE1 0.231** 

[0.059, 0.392] 

0.219** 

[0.063, 0.374] 
42-46% 

Moral alignment IE1nointer 0.225*** 

[0.103, 0.347] 

0.225*** 

[0.116, 0.333] 
45% 

Moral alignment √𝑣𝑎𝑟𝑁𝐼𝐸1 0.006 

[-0.020, 0.032] 

0.001 

[-0.007, 0.009] 
 

Duty to obey SNIE2 -0.010 

[-0.052, 0.032] 

-0.009 

[-0.052, 0.033] 
2% 

Duty to obey IE2nointer -0.017 

[-0.050, 0.017] 

-0.017 

[-0.053, 0.020] 
3% 

Duty to obey √𝑣𝑎𝑟𝑁𝐼𝐸2 ~0.001 

[-0.004, 0.004] 

~0.001 

[-0.005, 0.005] 
 

Joint SNIE12 0.061* 

[0.002, 0.12] 

0.038 

[-0.017, 0.094] 
7-12% 

Joint IE12nointer 0.064* 

[0.002, 0.126] 

0.064* 

[0.007, 0.121] 
12% 

Joint √𝑣𝑎𝑟𝑁𝐼𝐸12 0.006 

[-0.017, 0.029] 

0.001 

[-0.006, 0.007] 
 

Pj vs nopj SNDE 0.218 

[-0.077, 0.513] 

0.273 

[-0.022, 0.569] 
 

Pj vs nopj √𝑣𝑎𝑟𝑁𝐷𝐸 0.007 

[-0.011, 0.024] 

0.002 

[-0.015, 0.018] 
 

TCE 0.499** 

[0.166, 0.834] 

0.521** 

[0.180, 0.863] 
 

*p<0.05, **p<0.01, ***p<0.001, pj=procedural justice, nopj=procedural injustice 

Table3 Causal mediation analysis with sequentially ordered mediators, Study 1 
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Study 2 (n=235) Cooperation Cooperation 
Proportion 

mediated 

Sensitivity parameter (κ2) =0 =1 =0-1 

Moral alignment SNIE1 0.623*** 

[0.321, 0.926] 

0.640*** 

[0.358, 0.921] 
32% 

Moral alignment IE1nointer 0.424*** 

[0.240, 0.609] 

0.441*** 

[0.277, 0.605] 
27% 

Moral alignment √𝑣𝑎𝑟𝑁𝐼𝐸1 0.0.22 

[-0.032, 0.077] 

0.023 

[-0.010, 0.057] 
 

Duty to obey SNIE2 0.081 

[-0.045, 0.206] 

0.081 

[-0.032, 0.195] 
5% 

Duty to obey IE2nointer 0.023 

[-0.016, 0.062] 

0.023 

[-0.015, 0.061] 
1% 

Duty to obey √𝑣𝑎𝑟𝑁𝐼𝐸2 0.001 

[-0.005, 0.007] 

0.001 

[-0.003, 0.007] 
 

Joint SNIE12 0.178 

[-0.015, 0.370] 

0.184* 

[0.033, 0.336] 
9% 

Joint IE12nointer 0.060 

[-0.036, 0.123] 

0.062* 

[0.001, 0.124] 
4% 

Joint √𝑣𝑎𝑟𝑁𝐼𝐸12 0.006 

[-0.036, 0.047] 

0.005 

[-0.005, 0.015] 
 

Pj vs illegal SNDE 1.085*** 

[0.749, 1.421] 

1.085*** 

[0.737, 1.432] 
 

Pj vs illegal √𝑣𝑎𝑟𝑁𝐷𝐸 0.039 

[-0.007, 0.085] 

0.041 

[-0.001, 0.083] 
 

TCE 1.967*** 

[1.364, 2.569] 

1.990*** 

[1.424, 2.556] 
 

*p<0.05, **p<0.01, ***p<0.001 

Table 4 Causal mediation analysis with sequentially ordered mediators, Study 2 
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Mediation analysis 

technique 

Causal and parametric assumptions 

Single mediator 

 

Causal independence 

(Figure1 (a)) 

 

Single vector of 

mediators (assumptions 

for a vector of mediators) 

i. No unmeasured confounding of the T-Y relationship or 

Ytm╨T|C 

ii. No unmeasured confounding of the M-Y relationship also 

given T or Ytm╨M|C,T 

iii. No unmeasured confounding of the T-M relationship or 

Mt╨T|C 

iv. No unmeasured M-Y confounder L that was affected by T 

or Ytm╨Mt*|C 

Non-parametrically identifiable. 

Post-treatment 

confounding 

(Figure1 (b) and (d)) 

i. No unmeasured confounding of the T-Y, T-M, and T-L 

relationship or (Ytml Mtl Lt)╨T|C 

ii. No unmeasured confounding of the M-Y relationship also 

controlling for T and L or Ytml╨M|C, T, L 

iii. No unmeasured confounding of the L-Y relationship also 

controlling for T or Ytl╨L|C, T 

iv. No unmeasured M-Y confounder Z that was affected by T 

or Ytm╨Mt*|C, L 

Linearity and some kind of no-interaction. 

Sequential order 

(Figure1 (c) and (e)) 

i. No unmeasured confounding of the T-Y, T-M1, and T-M2 

relationship or (Ytm1m2 M2tm1 M1t)╨T|C 

ii. No unmeasured confounding of the M1-Y relationship also 

controlling for T or Ytm1m2╨M1|C, T 

iii. No unmeasured confounding of the M2-Y relationship also 

controlling for T and M1 or Ytm1m2╨M2|C, T, M1 

iv. No unmeasured M1-Y, M1-M2 or M2-Y confounder L1 or L2 

that was affected by T or Ytm1m2╨M1t*|C, M2tm1╨ M1t*|C, and 

Ytm1m2╨M2t**|C, M1t* 

Linearity and influence of sensitivity parameter κ2 (when M1 

affects M2). 
Table5 Summary of the causal and parametric assumptions of the  

causal mediation analysis techniques discussed in the paper 
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Figures

 
Figure 1 Mediation analysis (a) with two causally independent mediators, (b) with post-treatment 

confounding where M is dependent on L, (c) with two sequential mediators M1 and M2, 

(d) with post-treatment confounding where M is dependent on L1 and L2, 

(e) with three sequential mediators M1, M2 and M3 
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Figure 2 Mediation analysis where (a) moral alignment has a causal effect on duty to obey or  

(b) duty to obey has a causal effect on moral alignment 
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Appendix/A – Detailed Overview of the studies 

Study 1 and Study 2 were conducted in July 2013 in two subsequent weeks on the Amazon 

Mechanical Turk website. Study 1 manipulated police procedural justice, while Study 2 

manipulated police legality. These studies used a very similar newspaper article about road side 

checks in the United States as manipulation. In Study 1, the text described a procedurally unjust 

roadside check (i.e., angry, unresponsive, yelling officers), which was later either bolstered by 

fictitious data as an ordinary case (procedurally unjust condition) or as something which was 

an exception from the rule (procedurally just case). Study 2 introduced an almost identical story 

where during the roadside check the officers clearly abused their power (i.e., through excessive 

use of force, handcuffing and flooring an innocent driver), which was later presented either as 

a usual occurrence (illegal condition) or an increasingly unlikely one (legal condition). 

Procedural justice of the police, legality of the police, normative alignment with the police, 

obligation to obey the police, and willingness to cooperate with the police were measured with 

three items each on a 1-5 Likert-scale almost exclusively with construct-specific response 

alternatives (for the questionnaire and the prompts please refer to Table 6-Table 8). 

Sampling 

For both studies the respondents were recruited using Amazon’s Mechanical Turk (AMT). 

AMT provides an online marketplace where Mechanical Turk Workers (or Turkers) solve 

Human Intelligence Tasks (HITs) uploaded by the respective Mechanical Turk Requesters (or 

Providers). AMT provides more diversity than a regular college sample or even an average 

internet survey would do (Buhrmester, Kwang, and Gosling 2011). Comparison of studies ran 

online and conducted in real world settings showed very similar results, which implies the 

transferability of the experiments (Chandler, Mueller, and Paolacci 2014; Horton, Rand, and 

Zeckhauser 2011; Paolacci, Chandler, and Ipeirotis 2010). In another study (Buhrmester et al. 

2011) most of the data reached the required psychometric standards indicating similar internal 
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consistencies as traditional samples. In addition, Turkers seem to be more attentive to the tasks 

on hand and therefore more susceptible to experimental manipulation (Hauser and Schwarz 

2016). AMT has also been proven to be the most cost-effective compared to other online 

convenience samples (Antoun et al. 2015). 

In all three studies no restrictions were made for the Turkers’ characteristics other than 

their geographical location (i.e., United States). Although some (Peer, Vosgerau, and Acquisti 

2013) suggested relying on experienced participants with proven track records who were less 

likely to fail the attention tests (thus, providing fewer exclusions), this would have increased 

the selection bias, hence this filter was not imposed. In line with Mason and Suri’s (2012) 

recommendation, the two biggest Turker sites, “Turkopticon” and “Turker nation” were 

monitored during the data collection period to ensure that the stable unit treatment value 

assumption (SUTVA) was not violated. For the two studies an average of two forum entries 

were made, and the majority of them encouraged other fellow Turkers to fill out the surveys as 

they were considered a “good deal”, “fascinating”, “enticing” and so on. Nevertheless, none of 

these comments provided any information regarding the content of the studies other than the 

subject matter (i.e., police related survey). 

Procedure 

For the three surveys the Qualtrics website was used. In the beginning of the questionnaire, 

instructional manipulation checks were used asking the respondents to skip answering one of 

the questions. Those people who were inattentive enough to choose an answer alternative were 

eliminated from the study. As noted by Oppenheimer et al. (2009) instructional manipulation 

checks are not only useful because they are able to unveil impetuous satisfiers but they also 

encourage the individual to remain focused as further checks might show up later in the 

questionnaire. As discussed earlier, all of the experiments relied on textual priming as 

manipulation. Prior to being exposed to the manipulation respondents were reminded to read 
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them carefully since questions might be asked regarding the content of the upcoming text. The 

prompts were tailored so each respondent would receive a story situated in her respective state’s 

second largest city. This personalisation was designed to augment the story’s psychological 

proximity for the respondents and enhance their personal involvement (Maglio, Trope, and 

Liberman 2013). In other words, this state-specific manipulation meant to improve the strength 

of the priming through the immediacy of the described situation. Following the treatment 

appropriate attention checks (“screeners”), questions were asked from the participants to prove 

that they had actually read the piece (Berinsky, Margolis, and Sances 2016). In both studies 

those who failed to answer correctly at least one of the questions were presumed to be running 

through the survey and were excluded from further analysis (but not the study itself). 

All batches of questions were presented in separate blocks and in each block their order of 

appearance was randomised, which aimed to attenuate the potential primacy effect of the 

questions (Malhotra 2008). Some studies indicated that item placement can have a slight impact 

on the answers of the participants, which was also addressed through this randomisation 

(Tourangeau, Couper, and Conrad 2013). At the end of the questionnaire, participants were 

debriefed about the purpose of the study, given the option to share their thoughts regarding the 

questionnaire, and offered the opportunity to withdraw their answers from the study without 

forfeiting their reward. All studies went through thorough ethical consideration and received 

departmental approval. 

Manipulation checks 

For each study manipulation checks were conducted (Mutz and Pemantle 2016). For both 

studies these manipulation checks revealed that the procedural justice and legality conditions 

had the expected impact. To aid the interpretation of the results for the scales their means were 

derived. 
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Study 1: 

After filtering out the participants who failed the attention checks (6 people) or decided to 

withdraw from the study (5 people) approximately the same number of respondents remained 

in each group (procedurally unjust=113, procedurally just=112). Taking the mean of the 

variables, the pre-treatment variables still did not show any significant difference (tgender=1.17, 

p>0.05; tage=0.93, p>0.05; tethnic=0.61, p>0.05). In contrast, procedural justice (tpjust=5.98, 

p<0.001, Mpunj=2.46, Mpjust=3.08) and legality (tlegal=5.09, p<0.001, Mpunj=2.66, Mpjust=3.22) 

varied according to the procedural justice manipulation with higher values for the procedurally 

just, and lower values for the procedurally unjust experimental conditions. 

Study 2: 

Study 2 relied on an experimental design similar to Study 1, but instead of procedural 

justice, here, legality was manipulated. Despite the filtering for the failed attention checks (9 

people) and withdrawals from the study (6 people), nearly the same number of respondents 

entered each experimental group (illegal=117, legal=118). The pre-treatment variables 

appeared to be balanced (tethnic=-1.78, p>0.05; tage=1.07, p>0.05; tgender=1.57, p>0.05). Legality 

(tlegal=8.91, p<0.001, Milleg=2.62, Mleg=3.49) and procedural justice (tpjust=5.26, p<0.001, 

Milleg=2.60, Mleg=3.12) all exhibited significantly higher values in the legal condition than in 

the illegal one. 
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Appendix/B – Causal mediation analysis with g-computation 

G-computation was first introduced by Robins (1987) as an estimation method for the 

causal effects of time-varying treatment in the presence of time-varying confounders which 

were affected by the treatment. This has been a widely applied method in epidemiology for 

estimating various kinds of causal effects and as an adjustment technique to derive population 

average (marginal) effects (Kang et al. 2014; Snowden, Rose, and Mortimer 2011; Vansteelandt 

and Keiding 2011; Wang, Nianogo, and Arah 2017). Regardless of any specific application, g-

computation requires very similar procedures, thus for the sake of simplicity a single mediator 

application will be reviewed (for further details see: Wang and Arah 2015). Generally speaking, 

g-computation takes the following four steps: 

a) Deriving the empirical parameters where mediator M is modelled over treatment T 

and covariates C, and outcome Y is modelled over M, T, and C. This model is the 

same as the conventionally specified model for indirect effects (which can now 

include a treatment-mediator interaction) and is sometimes referred to as “Q-model”. 

b) Simulating the potential outcomes for the mediator and outcome relying on (a). 

Simulations often take a Monte Carlo approach where the goal of the simulation is 

to provide a full dataset with counterfactual outcomes that are free of confounding 

under the causal assumptions of the sequential ignorability assumption. First, this 

simulation creates a sufficiently large number of copies of the original sample with 

C that are marginally independent of each other and T. Then M is simulated as a 

function of these marginally independent T and C using the parametric model 

obtained at (a). Finally, Y is simulated as a function of the simulated M, T, and C 

using the parametric model obtained at (a). This step is called g-computation. 

c) Fitting the final models on the simulated dataset of (b). The simulated dataset from 

(b) is utilised to regress each different Y on T to acquire the point estimates of the 
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marginal effects. In case of causal mediation, this will be a Marginal Structural 

Model. 

d) Obtaining standard errors and confidence intervals. The default standard errors and 

confidence intervals generated by software programs are usually inappropriate for g-

computation parameters, which will require a resampling-based methodology such 

as bootstrapping. 

Parametric g-computation has several advantages. It can derive various types of estimates, 

incorporate nonlinearites, and address different types of outcomes. Moreover, it accommodates 

interaction effects for both the treatment and mediator while still permitting the estimation of a 

single marginal effect (Daniel, De Stavola, and Cousens 2011; Wang and Arah 2015). 

Furthermore, the estimates of g-computation tend to yield greater robustness, stability, and 

precision, than the ones acquired through inverse probability weighting, especially for 

continuous variables (Moerkerke et al. 2015). However, and importantly, g-computation does 

not differ from a more conventional mediation analysis in that a misspecified model at step (a) 

will lead to biased estimates. Specifically, for mediation analysis this requires correct model 

specification for both the mediator and the outcome. 

  



46 

 

Appendix/C – The equations and assumptions needed for parametric identification 

For the post-treatment confounder case three equations need to be specified (De Stavola 

et al. 2015): one for the mediator of interest (M), one for the outcome (Y), and one for the post-

treatment confounder (L). In each of these, T stands for the treatment, C for a vector of pre-

treatment covariates, M for the mediator, and L for the post-treatment confounder. The 

subscripts for each coefficient also indicate its connection to the particular variable. In addition, 

subscript 0 refers to the intercept and ε comprises the residuals for the particular equation. Thus, 

and as described in the main text of the article, the following general model permits the 

derivation of the NIE and NDE, provided that the causal identification and parametric 

assumptions are met (also see the same formulation in De Stavola et al. 2015: 68pp.): 

L=γ0+ γxX+γcC+εl 

1(a)   M=α0+αtT+αlL+αcC+αclCL+εm 

    Y=β0+βtT+βlL+βllL
2+βmM+βmmM2+βcC+βtlTL+βtmTM+εy 

As mentioned in the main text, there are two alternative ways for the parametric 

identification of the natural effects. For the first solution, following Robins and Greenland 

(1992), the interaction effect between the mediator and the treatment (βtm) has to be zero. 

Alternatively, and as shown by Petersen et al. (2006), both the interaction effect between the 

post-treatment confounder and the treatment (βtl) and the effect of the squared transformation 

of the post-treatment confounder (βll) must be zero. Considering all these, the final equation for 

the outcome Y either contains βtl and βll (Robins and Greenland, i.e., βtm=0) or βtm (Petersen et 

al., i.e., βtl=βll=0). In addition, and as discussed elsewhere, the linearity assumption also needs 

to be maintained to make the NDE and NIE estimable. Finally, the chosen model goes through 

the steps of g-computation (as exemplified in Appendix/B). 
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Tables for the Appendix 

Construct Questions 

Procedural 

justice 

Now some questions about when the police deal with crimes like house 

burglary and physical assault. (Almost never, Not very often, Often, 

Very often, Almost all the time) 

Based on what you have heard or your own experience how often would 

you say the police generally treat people in the United States with 

respect. 

About how often would you say that the police make fair, impartial 

decisions in the cases they deal with?  

When dealing with people in the United States, how often would you 

say the police generally explain their decisions and actions when asked 

to do so?  

About how often would you say that the police provide opportunity for 

unfair decisions to be corrected? 

Legality/ 

boundaries 

Do you agree or disagree with each of the following statements about 

the police in your community? (Strongly disagree – Strongly agree) 

The decisions and actions of the police are unduly influenced by 

pressure from political parties and politicians. 

The police take bribes. 

The police often arrest people for no good reason. 

Moral alignment 

with the police 

Do you agree or disagree with each of the following statements about 

the police in your community? (Strongly disagree – Strongly agree) 

The police generally have the same sense of right and wrong as I do. 

The police usually act in ways consistent with your own ideas about 

what is right and wrong. 

The police stand up for moral values that are important to people like 

me. 

Duty to obey the 

police 

Do you agree or disagree with each of the following statements about 

the police in your community? (Strongly disagree – Strongly agree) 

You should do what the police tell you to do even when you do not like 

the way they treat you. 

You should accept the decisions made by police, even if you think they 

are wrong. 

You should do what the police tell you to do even if you disagree. 

Willingness to 

cooperate with 

the police 

If the situation arose, how likely would you be to: (Very unlikely – Very 

Likely) 

…call the police to report a crime you witnessed? 

…report suspicious activity near your house to the police? 

… provide information to the police to help find a suspected criminal? 

Demographic 

questions 

Gender (Male, Female) 

How old are you? (Free space given to fill it out) 

How do you describe yourself? (American Indian or Alaska Native; 

Hawaiian or Other Pacific Islander; Asian or Asian American; Black or 

African American; Hispanic or Latino; White) 

Which state do you live in? (state names) 
Table 6 Questionnaire used for Study1 and Study2 
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Police rudeness and roadside checks in [State name] – 

Isolated cases or business as usual? 

 

On the night of June 22nd around 11pm, Michael Harrison was driving on a highway 

next to [second largest city in the State]. He was coming back from a visit to his sister and 

her new-born daughter, which ran a little late. Mr Harrison was listening to the radio when 

he was suddenly stopped by two police officers. He was not surprised, as there had been 

rumours of police checks in the area. He slowly pulled over his car and leaned over to the 

glove compartment to get his driver’s license, when one of the officers started yelling at him 

ordering him to leave his hands on the wheel without doing any sudden movements. After 

telling the officers that he had been only heading home he was asked to get out of the car. 

Still shouting, one of the officers ordered Mr Harrison to put his hands on the engine hood 

then strip searched him, presumably looking for weapons. When Mr Harrison asked what he 

had done, one of them told him that they would let him know later. Meanwhile, the other 

policeman was looking inside and under the car, finally asking what he was keeping in the 

trunk. Mr Harrison confessed that he kept only some tools in there and was allowed to show 

the officers the trunk. The policemen appeared to be really dissatisfied with the results. They 

took an alcohol and drug test but Mr Harrison tested negative for both. They also checked his 

driver’s license’s validity. After finding everything in order, they told him that he could leave, 

without giving any further explanation for the purpose of the search. Feeling humiliated, 

Michael Harrison drove home and called his sister to tell her what happened. Together they 

decided to contact the press in the morning instead of the authorities. “They made me feel 

ashamed” told Mr Harrison to our reporter. “I couldn’t let them get away with this.” 

 

Procedurally just 

In contrast with Michael Harrison’s case, figures recently released by the FBI indicated that 

in [State name], complaints regarding police behaviour during roadside checks have sharply 

decreased from 201 in 2007 to an all-time low figure of 175 in 2012. “We are aware of the problem” 

admitted the police chief of [second biggest city in the State]. “that’s why we try to enrol as many 

police officers to the training programmes as possible. I am sure that such efforts will pay off 

eventually.” 

 

Procedurally unjust 

In line with Michael Harrison’s case, figures recently released by the FBI indicated that in 

[State name], complaints regarding police mistreatment during roadside checks have sharply 

increased from 175 in 2007 to an all-time high figure of 201 in 2012. “We are aware of the problem” 

admitted the police chief of [second biggest city in the State]. “that’s why we try to enrol as many 

police officers to the training programmes as possible. I am sure that such efforts will pay off 

eventually.” 

 
Table 7 Manipulation text for Study1 

  



52 

 

Brutal stop and search in [State name] –  

Isolated cases or business as usual? 

On the night of June 22nd around 11pm, Michael Harrison was driving on a highway next to 

[second largest city in the State]. He was coming back from a visit to his sister and her new-

born daughter, which ran a little late. Mr Harrison was listening to the radio when he was 

suddenly stopped by two police officers. He was not surprised, as there had been rumours of 

police checks in the area. He slowly pulled over his car and leaned over to the glove 

compartment to get his driver’s license, when one of the officers started yelling at him and 

pointing a gun straight at him. He was ordered to get out of the car with his hands on the back 

of his head, he floored and handcuffed as soon as he obeyed. While the policemen searched 

his car he was left in the dust with his face down, asking for explanations to no vail. After 

they finished searching, the policemen got him up, and asked him what his purpose of being 

there was. He told them he had just been heading home. The officers then informed him that 

they had to treat him that way, because he made a threatening move and they suspected he 

was hiding a gun somewhere in the car. Finally, they uncuffed him and let him go after 

warning him, not to provoke such measures again. Still terrified, Michael Harrison drove 

home and called his sister to tell her what happened. Together they decided to contact the 

press in the morning instead of the authorities. They were afraid of possible retaliation by the 

local police. “I still cannot be sure that they won’t come for me tomorrow or the day after 

that” told Mr Harrison to our reporter. “But I couldn’t let them get away with this.” 

 

Legal 

In contrast with Michael Harrison’s case, figures recently released by the FBI indicated that 

in [State name], complaints regarding police mistreatment during roadside checks have sharply 

decreased from 201 in 2007 to an all-time low figure of 175 in 2012. The report also found that the 

various police forces conducted impartial and thorough internal investigations of such complaints, 

followed by harsh sanctions against convicted officers. “I am not sure whether they broke any rules” 

added the police chief of [second biggest city in the State]. “At such a late hour, at the side of a 

highway plunged in almost complete darkness, they [the officers] had to decide really quickly how to 

react. We will certainly look into the case, but I cannot tell right now whether they did the right thing 

or not.” 

 

Illegal 

In line with Michael Harrison’s case, figures recently released by the FBI indicated that in 

[State name], complaints regarding police mistreatment during roadside checks have sharply 

increased from 175 in 2007 to an all-time high figure of 201 in 2012. The report also found that the 

various police forces conducted partial and sloppy internal investigations of such complaints, 

followed by limited sanctions against convicted officers. “I am not sure whether they broke any 

rules” added the police chief of [second biggest city in the State]. “At such a late hour, at the side of 

a highway plunged in almost complete darkness, they [the officers] had to decide really quickly how 

to react. We will certainly look into the case, but I cannot tell right now whether they did the right 

thing or not.” 

 
Table 8 Manipulation text for Study2 
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Figures for the Appendix 

 
Figure3 NDE Procedural justice – Study 1 

 
Figure4 NIE1 Moral alignment – Study 1 
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Figure5 NIE2 Duty to obey – Study 1 

 
Figure6 NIE12 Joint effect – Study 1 
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Figure7 NDE Legality – Study 2 

 
Figure8 NIE1 Moral alignment – Study 2 
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Figure9 NIE2 Duty to obey – Study 2 

 
Figure10 NIE12 Joint effect – Study 2 
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Footnotes 

1 To further complicate the matter, a simple random assignment of the mediator is not feasible, 

as even in such a case M needs to remain an outcome of T, but due to the randomisation would 

become unaffected by T (Coffman and Zhong 2012; Imai, Keele, and Yamamoto 2010; Luke 

Keele 2015a). Hence special designed based strategies need to be employed to address this 

problem (Imai, Tingley, and Yamamoto 2013; Pirlott and Mackinnon 2016). 

2 Identification throughout the paper refers to causal identification, while in the SEM literature 

it usually alludes to model-based identification. The test of these identification criteria always 

preludes the statistical analysis as a necessary but not sufficient step of causal analysis. 

Moreover, this identification permits the calculation of the effects of interest irrespective of the 

chosen statistical model for estimation (Manski 2007; Moerkerke et al. 2015). 

3 Some scholars (e.g., Daniel et al. 2015; Preacher 2015; De Stavola et al. 2015; Wang and Arah 

2015) add consistency and the stable unit treatment value assumption (SUTVA) as further 

requirements. However, as discussed by Shadish, Cook, and Campbell (2002) SUTVA is a 

more general fundamentally design based assumption. Moreover, Pearl (2010) argues that the 

consistency assumption is in fact a theorem required by all assumptions stated in the potential 

outcome framework. Even if neither SUTVA nor consistency are included explicitly, they will 

be presumed for all causal analysis discussed in the paper. 

4 Notably, Pearl (2014) advocated milder assumptions and argued that sequential ignorability 

is a sufficient, but not necessary assumption for identifying causal effects. Imai and Keele 

(2015) contested his propositions and argued for the more stringent requirements discussed by 

this article. 

5 This is the reason why in some places (e.g., Avin et al. 2005; Tchetgen Tchetgen and 

VanderWeele 2014) L is referred to as a “recanting witness”. 
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6 In particular, this is the model specification for Robins and Greenland (1992). For Petersen et 

al. (2006) the interaction between T and L is entered only in the model for M, and the squared 

transformation of M and the M-T interaction are included in the model for Y 

7 For the causal identification of the direct and indirect effects one of the assumptions of SEM 

is that the errors are not correlated with each other. 

8 When the first and the third potential outcome are set to the same value (i.e., t*=t***, such as 

NIE1-101, NIE1-010 etc.) this sensitivity parameter is not needed. 

9 Importantly, sensitivity analyses are not exclusive to the potential outcome framework, SEM 

has been also applying such techniques typically to test certain modelling assumptions (e.g., 

Pek and MacCallum 2011), but sometimes also to assess causal identifying assumption (Mauro 

1990). 


