
Perpetual dual American barrier options for short sellers

Pavel V. Gapeev∗

We obtain closed-form solutions to the problems of pricing of perpetual American
put and call barrier options in the one-dimensional Black-Merton-Scholes model from
the point of view of short sellers. The proof is based on the reduction of the original
optimal stopping problems for a one-dimensional geometric Brownian motion with positive
exponential discounting rates to the equivalent free-boundary problems and the solution
of the latter problems by means of the smooth-fit conditions.

1 Introduction

The main aim of this paper is to present closed-form solutions to the optimal stopping problems
of (2.3) for the geometric Brownian motion S defined in (2.1)-(2.2) with positive exponential
discounting rates. The process S can describe the price of the underlying risky asset (e.g. a
stock) in a model of a financial market. The values of (2.3) are then the rational (or no-arbitrage)
prices of perpetual American barrier options in the Black-Merton-Scholes model from the point
of view of short sellers (see, e.g. Shiryaev [27; Chapter VIII; Section 2a], Peskir and Shiryaev
[22; Chapter VII; Section 25], or Detemple [10], for an extensive overview of other related results
in the area).

Optimal stopping problems for one-dimensional diffusion processes with positive exponential
discounting rates have been considered in Dynkin [12], Fakeev [13], Mucci [18], Salminen [25],
Øksendal and Reikvam [20], and Beibel and Lerche [5]-[6] among others (see also Bensoussan
and Lions [7; Theorem 3.19] and Øksendal [19; Chapter X]), for general rewards and infinite
time horizon. More recently, such optimal stopping problems were studied in Dayanik and
Karatzas [9], Alvarez [1]-[2], Peskir and Shiryaev [22], and Lamberton and Zervos [16] (see the
latter references for an extensive discussion). Optimal stopping problems for one-dimensional
continuous-time Markov processes with positive exponential discounting rates were recently
considered by Shepp and Shiryaev [26], Xia and Zhou [28], Battauz et al. [3]-[4], and De
Donno et al. [11] among others. The consideration of positive discounting rates implied the
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appearance of disconnected continuation regions or so-called double continuation regions. In the
present paper, we derive explicit expressions for the value functions and stopping boundaries of
some optimal stopping problems for one-dimensional geometric Brownian motions with positive
exponential discounting rates. It is assumed that the rewards are equal to zero whenever the
process reaches certain constant upper or lower levels, so that the value functions are equal to
the rational values of perpetual dual American barrier options.

The paper is organised as follows. In Section 2, we introduce the setting and notations of
the perpetual dual American up-and-out put and down-and-out call option pricing problems
as optimal stopping problems for a geometric Brownian motion with a positive exponential
discounting rate and formulate the associated free-boundary problems. In Section 3, we derive
closed-form solutions of the latter problems under various relations between the parameters of
the model. In Section 4, we verify that the solutions of the free-boundary problems provide the
solutions of the original optimal stopping problems. The main results of the paper are stated
in Propositions 1 and 2.

2 Preliminaries

In this section, we give a formulation of optimal stopping problems with positive exponential
discounting rates related to the pricing of perpetual American barrier options from the point of
view of short sellers.

2.1 The model

For a precise formulation of the problem, let us consider a probability space (Ω,F , P ) with a
standard Brownian motion B = (Bt)t≥0 and its natural filtration (Ft)t≥0. It is further assumed
that the filtration (Ft)t≥0 is right-continuous and completed by all the sets of P -measure zero.
Let us define the process S = (St)t≥0 by

St = s exp
((
r − δ − σ2/2

)
t+ σ Bt

)
(2.1)

which solves the stochastic differential equation

dSt = (r − δ)St dt+ σ St dBt (S0 = s) (2.2)

where s > 0 is fixed, and r > 0, δ > 0, and σ > 0 are some given constants. It is assumed that
the process S describes the price of a risky asset on a financial market, where r is the riskless
interest rate of a bank account, δ is the dividend rate paid to the asset holders, and σ is the
volatility rate. The purpose of the present paper is to study the optimal stopping problems for
the value functions

V ∗i (s) = inf
τi
Es
[
erτi Gi(Sτi) I(τi < ζi)

]
(2.3)

with G1(s) = K1 − s and G2(s) = s −K2, for some Ki > 0 fixed, where the infima are taken
over all stopping times τi, i = 1, 2, with respect to the filtration (Ft)t≥0. Here Es denotes the
expectation with respect to the probability measure P under the assumption that the process
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S starts at s > 0, and I(·) is the indicator function. We assume that the random times ζi,
i = 1, 2, are given by

ζ1 = inf{t ≥ 0 |St ≥ b′} and ζ2 = inf{t ≥ 0 |St ≤ a′} (2.4)

for some 0 < b′ < K1 and 0 < K2 < a′ fixed. Since the initial probability measure P is a
martingale martingale measure (see, e.g. [27; Chapter VII, Section 3g]), the values of (2.3)
provide the rational (or no-arbitrage) prices of the perpetual American dual barrier down-and-
out put and up-and-out call options, respectively. The operations of such contracts can be
described as follows. It is assumed that the short sellers receive the fixed payments V ∗i (s) at
time 0 and incur obligations to deliver to the buyers the payoffs erτiGi(Sτi)I(τi < ζi) at some
future times τi, i = 1, 2, which the sellers can choose. Observe that when 2r − δ ≤ 0 holds,
the process (ertSt)t≥0 is a supermartingale closed at zero, so that the optimal exercise time τ ∗1
is zero, while the optimal exercise time τ ∗2 coincides with ζ2. In this respect, we further assume
that 2r − δ > 0 holds.

2.2 The optimal exercise times

By means of the results of general theory of optimal stopping (see, e.g. [22; Chapter I, Sec-
tion 2]), it follows from the structure of the rewards in (2.3) that the optimal stopping times in
these problems are given by

τ ∗i = inf{t ≥ 0 |V ∗i (St) = Gi(St)} (2.5)

for every i = 1, 2. We further assume that the optimal stopping times in the problems of (2.3)
are of the form

τ ∗1 = inf{t ≥ 0 |St /∈ (a∗, b
′)} and τ ∗2 = inf{t ≥ 0 |St /∈ (a′, b∗)} (2.6)

for some numbers 0 < a∗ < b′ and 0 < a′ < b∗ to be determined. By a standard application
of Itô’s formula (see, e.g. [17; Theorem 4.4]) to the process er(τ

∗
i ∧t)Gi(Sτ∗i ∧t), we obtain the

representations

er(τ
∗
i ∧t)Gi(Sτ∗i ∧t) I(t < ζi) = Gi(s) (2.7)

+ (−1)i
∫ τ∗i ∧t

0

eru
(
(2r − δ)Su − r Ki

)
I(u < ζi) du+N i

t

for s < b′ or s > a′, where the process (N i
τ∗i ∧t

)t≥0 defined by

N i
τ∗i ∧t

= (−1)i
∫ τ∗i ∧t

0

eru I(u < ζi)σ Su dBu (2.8)

is a continuous square integrable martingale under the probability measure Ps, for every i = 1, 2.
Hence, by applying Doob’s optional sampling theorem (see, e.g. [17; Chapter III, Theorem 3.6]
or [23; Chapter II, Theorem 3.2]), we obtain that the value functions in (2.3) admit the repre-
sentations

V ∗i (s) = Gi(s) + (−1)iEs

[ ∫ τ∗i

0

ert
(
(2r − δ)St − r Ki

)
I(t < ζi) dt

]
(2.9)
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for all s < b′ or s > a′, and every i = 1, 2. Thus, it is seen from the structure of the integrand
in (2.9) that it is not optimal to exercise the barrier put and call options when St > a with
a = rK1/(2r−δ) and St < b with b = rK2/(2r−δ), for any 0 ≤ t < τ ∗i ∧ζi, i = 1, 2, respectively.
In this respect, we further assume that the optimal stopping boundaries a∗ and b∗ in (2.6) should
satisfy the inequalities a∗ < a and b∗ > b, respectively.

2.3 The free-boundary problems

It can be shown by means of Itô’s formula that the infinitesimal operator L of the process S
acts on a locally bounded twice continuously differentiable function F (s) on (0,∞) in the form

(LF )(s) = (r − δ) s F ′(s) +
σ2s2

2
F ′′(s) (2.10)

for all s > 0. In order to find closed-form expressions for the unknown value functions V ∗i (s),
i = 1, 2, from (2.3) and the unknown boundaries a∗ and b∗ from (2.6), we may use the results
of general theory of optimal stopping problems for continuous time Markov processes (see, e.g.
[22; Chapter IV, Section 8]) and formulate the associated free-boundary problems

(LVi)(s) = −rVi(s) for a < s < b′ or a′ < s < b and i = 1, 2 (2.11)

V1(s)
∣∣
s=a+

= K1 − a, V2(s)
∣∣
s=b− = b−K2 (2.12)

V ′1(s)
∣∣
s=a+

= −1, V2(s)
∣∣
s=b− = 1 (2.13)

V ′2(s)
∣∣
s=b′− = 0, V2(s)

∣∣
s=a′+

= 0 (2.14)

V1(s) = K1 − s for s < a, V2(s) = s−K2 for s > b (2.15)

V1(s) < K1 − s for a < s < b′, V2(s) < s−K2 for a′ < s < b (2.16)

(LVi)(s) > −rVi(s) for s < a or s > b and i = 1, 2 (2.17)

for some 0 < a < b′ < K1 and 0 < K2 < a′ < b to be determined. Observe that the
superharmonic characterisation of the value function (see, e.g. [22; Chapter IV, Section 9])
implies that V ∗i (s), i = 1, 2, are the smallest functions satisfying (2.11)-(2.12) and (2.15)-(2.16)
with the boundaries a∗ and b∗, respectively.

3 Solutions to the free-boundary problems

We now look for functions which solve the free-boundary problems stated in (2.11)-(2.17).
For this purpose, we consider three separate cases based on the different relations between the
parameters of the model (see Figures 1 and 2 below for computer drawings of the value functions
V ∗i (s), i = 1, 2).

3.1 The case 0 < r < (r − δ − σ2/2)2/(2σ2)

Let us first assume that 0 < r < (r− δ − σ2/2)2/(2σ2) holds. Then, the general solution of the
second-order ordinary differential equation in (2.11) has the form

Vi(s) = Ci,1 s
η1 + Ci,2 s

η2 (3.1)
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Figure 1. A computer drawing of the value function V ∗1 (s) of the put option.
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Figure 2. A computer drawing of the value function V ∗2 (s) of the call option.
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where Ci,j, i, j = 1, 2, are some arbitrary constants, and ηj, j = 1, 2, are given by

ηj =
1

2
− r − δ

σ2
− (−1)j

√(
1

2
− r − δ

σ2

)2

− 2r

σ2
(3.2)

so that the identity
η1

η1 − 1

η2
η2 − 1

=
r

2r − δ
(3.3)

is satisfied. Note that when r−δ < −σ2/2 holds, we have 1 < η2 < η1, so that 1 < η1/(η1−1) <
η2/(η2−1) < r/(2r−δ) and (η1−1)/(η2−1) > 1. Moreover, when −σ2/2 ≤ r−δ < σ2/2 holds,
we have 0 < η2 < η1 < 1, so that η1/(η1 − 1) < η2/(η2 − 1) < 0 and 0 < (η1 − 1)/(η2 − 1) < 1.
Finally, when r − δ > σ2/2 holds, we have η2 < η1 < 0, so that 0 < r/(2r − δ) < η1/(η1 − 1) <
η2/(η2 − 1) < 1 and 0 < (η1 − 1)/(η2 − 1) < 1.

Then, by applying the conditions from (2.12)-(2.14) to the function in (3.1), we get that the
equalities

C1,1 a
η1 + C1,2 a

η2 = K1 − a, C2,1 b
η1 + C2,2 b

η2 = b−K2 (3.4)

C1,1 η1 a
η1 + C1,2 η2 a

η2 = −a, C2,1 η1 b
η1 + C2,2 η2 b

η2 = b (3.5)

C1,1 (b′)η1 + C1,2 (b′)η2 = 0, C2,1 (a′)η1 + C2,2 (a′)η2 (3.6)

should hold for some 0 < a < b′ < K1 and 0 < K2 < a′ < b. Hence, solving the systems in
(3.4)-(3.6), we obtain that the candidate value function has the form

V1(s; a∗, b
′) (3.7)

=
1

η1 − η2

((
(η2 − 1) a∗ − η2K1

) ( s
a∗

)η1
+
(
(1− η1) a∗ + η1K1

) ( s
a∗

)η2)
for a∗ < s < b′ < K1, and

V2(s; b∗, a
′) (3.8)

=
1

η1 − η2

((
(1− η2) b∗ + η2K2

) ( s
b∗

)η1
+
(
(η1 − 1) b∗ − η1K2

) ( s
b∗

)η2)
for K2 < a′ < s < b∗, where a∗ and b∗ are determined from the arithmetic equations

η1K1 − (η1 − 1)a

η2K1 − (η2 − 1)a
≡ η1 − 1

η2 − 1
+

(η1 − η2)K1

(η2 − 1)2

(
a− η2K1

η2 − 1

)−1
=
(b′
a

)η1−η2
(3.9)

and

(η1 − 1)b− η1K2

(η2 − 1)b− η2K2

≡ η1 − 1

η2 − 1
+

(η1 − η2)K2

(η2 − 1)2

(
b− η2K2

η2 − 1

)−1
=
(a′
b

)η1−η2
(3.10)

respectively.
In order to consider the put option case, we observe from the mentioned above properties

of the numbers ηj, j = 1, 2, from (3.2) and the identity in (3.3) that, if r − δ < −σ2/2 holds,
then the equation in (3.9) has a unique solution a∗ on the interval (0, b′) such that a∗ < a with
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a = rK1/(2r− δ). Then, if −σ2/2 ≤ r− δ < σ2/2 holds, then the equation in (3.9) has a unique
solution a∗ on the interval (0, b′) such that a∗ < a, whenever either the inequality r ≤ δ or the
inequalities r > δ and b′ ≤ a are satisfied. Finally, if r − δ > σ2/2 holds, then the equation in
(3.9) has no solution a∗ on the interval (0, b′) such that a∗ < a, and thus, we can set a∗ = 0, so
that V1(s; a∗, b

′) = 0, for all 0 < s < b′.
In order to consider the call option case, we observe from the mentioned properties of ηj,

j = 1, 2, and the identity above that, if r − δ > σ2/2 holds, then the equation in (3.10) has
a unique solution b∗ on the interval (a′,∞) such that b∗ > b with b = rK2/(2r − δ). Then, if
−σ2/2 ≤ r−δ < σ2/2 holds, then the equation in (3.10) has a unique solution b∗ on the interval
(a′,∞) such that b∗ > b, whenever either the inequality r ≥ δ or the inequalities r < δ and
a′ ≥ b are satisfied. Finally, if r− δ < −σ2/2 holds, then the equation in (3.10) has no solution
b∗ on the interval (a′,∞) such that b∗ > b, and thus, we can set b∗ =∞, so that V2(s; b∗, a

′) = 0,
for all s > a′.

3.2 The case r = (r − δ − σ2/2)2/(2σ2)

Let us now assume that r = (r − δ − σ2/2)2/(2σ2) holds. Then, the general solution of the
ordinary differential equation in (2.11) has the form

Vi(s) = Ci,1 s
λ ln s+ Ci,2 s

λ (3.11)

where Ci,j, i, j = 1, 2, are some arbitrary constants, and λ is given by:

λ =
1

2
− r − δ

σ2
(3.12)

so that the identity (
λ

λ− 1

)2

=
r

2r − δ
(3.13)

is satisfied. Observe that the value of λ in (3.12) coincides with the values of ηi, i = 1, 2, under
the current assumption r = (r − δ − σ2/2)2/(2σ2), since the appropriate expression under the
root sign becomes zero in this case. We also note that when r − δ < −σ2/2 holds, we have
λ > 1, so that λ/(λ− 1) > 1 and 1/(λ− 1) > 0. Moreover, when −σ2/2 ≤ r − δ < σ2/2 holds,
we have 0 < λ < 1, so that λ/(λ− 1) < 0 and 1/(λ− 1) < 0. Finally, when r− δ > σ2/2 holds,
we have λ < 0, so that 0 < λ/(λ− 1) < 1 and 1/(λ− 1) < 0.

Then, by applying the conditions from (2.12)-(2.14) to the function in (3.11), we get that
the equalities

C1,1 a
λ ln a+ C1,2 a

λ = K1 − a, C2,1 b
λ ln b+ C2,2 b

λ = b−K2 (3.14)

C1,1 a
λ (λ ln a+ 1) + C1,2 λ a

λ = −a, C2,1 b
λ (λ ln b+ 1) + C2,2 λ b

λ = b (3.15)

C1,1 (b′)λ ln b′ + C1,2 (b′)λ = 0, C2,1 (a′)λ ln a′ + C2,2 (a′)λ = 0 (3.16)

should hold for some 0 < a < b′ < K1 and 0 < K2 < a′ < b. Thus, solving the systems in
(3.14)-(3.16), we obtain that the candidate value function has the form

V1(s; a∗, b
′) =

(
(λ− 1) a∗ − λK1

) ( s
a∗

)λ
ln
( s
a∗

)
+ (K1 − a∗)

( s
a∗

)λ
(3.17)
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for a∗ < s < b′ < K1, and

V2(s; b∗, a
′) =

(
λK2 − (λ− 1) b∗

) ( s
b∗

)λ
ln
( s
b∗

)
+ (b∗ −K2)

( s
b∗

)λ
(3.18)

for K2 < a′ < s < b∗, where a∗ and b∗ are determined from the arithmetic equations

K1 − a
λK1 − (λ− 1)a

≡ 1

λ− 1
+

K1

(λ− 1)2

(
a− λK1

λ− 1

)−1
= ln

(b′
a

)
(3.19)

and

b−K2

(λ− 1)b− λK2

≡ 1

λ− 1
+

K2

(λ− 1)2

(
b− λK2

λ− 1

)−1
= ln

(a′
b

)
(3.20)

respectively.
In order to consider the put option case, we observe from the expressions for λ in (3.12) and

(3.13) that, if r− δ < −σ2/2 holds, then the equation in (3.19) has a unique solution a∗ on the
interval (0, b′) such that a∗ < a with a = rK1/(2r − δ). Then, if −σ2/2 ≤ r − δ < σ2/2 holds,
then the equation in (3.19) has a unique solution a∗ on the interval (0, b′) such that a∗ < a,
whenever either the inequality r ≤ δ or the inequalities r > δ and b′ ≤ a are satisfied. Finally,
if r − δ > σ2/2 holds, then the equation in (3.19) has no solution a∗ on the interval (0, b′) such
that a∗ < a, and thus, we can set a∗ = 0, so that V1(s; a∗, b

′) = 0, for all 0 < s < b′.
In order to consider the call option case, we observe from the mentioned above properties

of λ that, if r − δ > σ2/2 holds, then the equation in (3.20) has a unique solution b∗ on the
interval (a′,∞) such that b∗ > b with b = rK2/(2r − δ). Then, if −σ2/2 ≤ r − δ < σ2/2 holds,
then the equation in (3.20) has a unique solution b∗ on the interval (a′,∞) such that b∗ > b,
whenever either the inequality r ≥ δ or the inequalities r < δ and a′ ≥ b are satisfied. Finally,
if r − δ < −σ2/2 holds, then the equation in (3.20) has no solution b∗ on the interval (a′,∞)
such that b∗ > b, and thus, we can set b∗ =∞, so that V2(s; b∗, a

′) = 0, for all s > a′.

3.3 The case r > (r − δ − σ2/2)2/(2σ2)

Let us finally assume that r > (r − δ − σ2/2)2/(2σ2) holds. Then, the general solution of the
ordinary differential equation in (2.11) has the form

Vi(s) = Ci,1 s
λ sin

(
θ ln s

)
+ Ci,2 s

λ cos
(
θ ln s

)
(3.21)

where Ci,j, i, j = 1, 2, are some arbitrary constants, while λ is given by (3.12) and θ is set as

θ =

√
2r

σ2
−
(

1

2
− r − δ

σ2

)2

. (3.22)
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Hence, by applying the conditions from (2.12)-(2.14) to the function in (3.21), we get that the
equalities

C1,1 a
λ sin

(
θ ln a

)
+ C1,2 a

λ cos
(
θ ln a

)
= K1 − a, (3.23)

C2,1 b
λ sin

(
θ ln b

)
+ C2,2 b

λ cos
(
θ ln b

)
= b−K2 (3.24)

(C1,1 λ− C1,2 θ) a
λ sin

(
θ ln a

)
+ (C1,1 θ + C1,2 λ) aλ cos

(
θ ln a

)
= −a, (3.25)

(C2,1 λ− C2,2 θ) a
λ sin

(
θ ln a

)
+ (C2,1 θ + C2,2 λ) aλ cos

(
θ ln a

)
= b (3.26)

C1,1 (b′)λ sin
(
θ ln b′

)
+ C1,2 (b′)λ cos

(
θ ln b′

)
= 0, (3.27)

C2,1 (a′)λ sin
(
θ ln a′

)
+ C2,2 (a′)λ cos

(
θ ln a′

)
= 0 (3.28)

should hold for some 0 < a < b′ < K1 and 0 < K2 < a′ < b. Thus, solving the systems in
(3.23)-(3.28), we obtain that the candidate value function has the form

V1(s; a∗, b
′) (3.29)

=
(
(λ− 1)a∗ − λK1

) ( s
a∗

)λ
sin
(
θ ln

( s
a∗

))
+ θ(K1 − a∗)

( s
a∗

)λ
cos
(
θ ln

( s
a∗

))
for a∗ < s < b′ < K1, and

V2(s; b∗, a
′) (3.30)

=
(
λK2 − (λ− 1)b∗

) ( s
b∗

)λ
sin
(
θ ln

( s
b∗

))
+ θ(b∗ −K2)

( s
b∗

)λ
cos
(
θ ln

( s
b∗

))
for K2 < a′ < s < b∗, where a∗ and b∗ are determined from the arithmetic equations

arctan

(
θ

λ− 1
+

θK1

(λ− 1)2

(
a− λK1

λ− 1

)−1)
= θ ln

(b′
a

)
(3.31)

and

arctan

(
θ

λ− 1
+

θK2

(λ− 1)2

(
b− λK2

λ− 1

)−1)
= θ ln

(a′
b

)
(3.32)

respectively.
In order to consider the put option case, we observe from the expressions for λ in (3.12) and

(3.13) that, if r− δ < −σ2/2 holds, then the equation in (3.31) has a unique solution a∗ on the
interval (0, b′) such that a∗ < a with a = rK1/(2r − δ). Then, if −σ2/2 ≤ r − δ < σ2/2 holds,
then the equation in (3.31) has a unique solution a∗ on the interval (0, b′) such that a∗ < a,
whenever either the inequality r ≤ δ or the inequalities r > δ and b′ ≤ a are satisfied. Finally,
if r − δ > σ2/2 holds, then the equation in (3.31) has no solution a∗ on the interval (0, b′) such
that a∗ < a, and thus, we can set a∗ = 0, so that V1(s; a∗, b

′) = 0, for all 0 < s < b′.
In order to consider the call option case, we observe from the mentioned above properties

of λ that, if r − δ > σ2/2 holds, then the equation in (3.32) has a unique solution b∗ on the
interval (a′,∞) such that b∗ > b with b = rK2/(2r − δ). Then, if −σ2/2 ≤ r − δ < σ2/2 holds,
then the equation in (3.32) has a unique solution b∗ on the interval (a′,∞) such that b∗ > b,
whenever either the inequality r ≥ δ or the inequalities r < δ and a′ ≥ b are satisfied. Finally,
if r − δ < −σ2/2 holds, then the equation in (3.32) has no solution b∗ on the interval (a′,∞)
such that b∗ > b, and thus, we can set b∗ =∞, so that V2(s; b∗, a

′) = 0, for all s > a′.
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4 Main results

In this section, we show that the solutions of the free-boundary problems from the previous
section provides the solutions of the initial optimal stopping problems of (2.3).

Proposition 4.1 Let the process S be given by (2.1), with some r > 0, δ > 0, and σ > 0 fixed,
and such that 2r − δ > 0. Then, the value function of the perpetual American dual barrier
(up-and-out) put option in (2.3) has the form

V ∗1 (s) =

{
V1(s; a∗, b

′), if a∗ < s < b′

K1 − s, if s ≤ a∗
(4.1)

for some 0 < b′ < K1 fixed, and τ ∗1 from (2.6) is an optimal stopping time, where we have the
following assertions:

(i) When 0 < r < (r − δ − σ2/2)2/(2σ2) holds, the function V1(s; a∗, b
′) takes the expression

of (3.7), while if r − δ < −σ2/2 then the equation in (3.9) has a unique solution a∗ on the
interval (0, b′ ∧ a) with a = rK1/(2r − δ), if −σ2/2 ≤ r − δ < σ2/2 and either the inequality
r ≤ δ or the inequalities r > δ and b′ ≤ a are satisfied then the equation in (3.9) has a unique
solution a∗ on the interval (0, b′ ∧ a), as well as if r − δ > σ2/2 then the equation in (3.9) has
no solution a∗ on the interval (0, b′ ∧ a), so that a∗ = 0 and V1(s; a∗, b

′) ≡ 0.
(ii) When r = (r − δ − σ2/2)2/(2σ2) holds, the function V1(s; a∗, b

′) takes the expression
of (3.17), while if r − δ < −σ2/2 then the equation in (3.19) has a unique solution a∗ on the
interval (0, b′ ∧ a), if −σ2/2 ≤ r − δ < σ2/2 and either the inequality r ≤ δ or the inequalities
r > δ and b′ ≤ a are satisfied then the equation in (3.19) has a unique solution a∗ on the interval
(0, b′∧a), as well as if r−δ > σ2/2 then the equation in (3.19) has no solution a∗ on the interval
(0, b′ ∧ a), so that a∗ = 0 and V1(s; a∗, b

′) ≡ 0.
(iii) When r > (r − δ − σ2/2)2/(2σ2) holds, the function V1(s; a∗, b

′) takes the expression
of (3.29), while if r − δ < −σ2/2 then the equation in (3.31) has a unique solution a∗ on the
interval (0, b′ ∧ a), if −σ2/2 ≤ r − δ < σ2/2 and either the inequality r ≤ δ or the inequalities
r > δ and b′ ≤ a are satisfied then the equation in (3.31) has a unique solution a∗ on the interval
(0, b′∧a), as well as if r−δ > σ2/2 then the equation in (3.31) has no solution a∗ on the interval
(0, b′ ∧ a), so that a∗ = 0 and V1(s; a∗, b

′) ≡ 0.

Proposition 4.2 Let the process S be given by (2.1), with some r > 0, δ > 0, and σ > 0 fixed,
and such that 2r − δ > 0. Then, the value function of the perpetual American dual barrier
(down-and-out) call option in (2.3) has the form:

V ∗2 (s) =

{
V2(s; b∗, a

′), if a′ < s < b∗

s−K2, if s ≥ b∗
(4.2)

for some 0 < K2 < a′ fixed, and τ ∗2 from (2.6) is an optimal stopping time, where we have the
following assertions:

(i) When 0 < r < (r − δ − σ2/2)2/(2σ2) holds, the function V2(s; b∗, a
′) takes the expression

of (3.8), while if r−δ > σ2/2 then the equation in (3.10) has a unique solution b∗ on the interval
(a′ ∨ b,∞) with b = rK2/(2r − δ), if −σ2/2 ≤ r − δ < σ2/2 and either the inequality r ≥ δ or
the inequalities r < δ and a′ ≥ b are satisfied then the equation in (3.10) has a unique solution
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b∗ on the interval (a′∨ b,∞), while if r− δ < −σ2/2 then the equation in (3.10) has no solution
b∗ on the interval (a′ ∨ b,∞), so that b∗ =∞ and V2(s; b∗, a

′) ≡ 0.
(ii) When r = (r − δ − σ2/2)2/(2σ2) holds, the function V2(s; b∗, a

′) takes the expression of
(3.18), while if r− δ > σ2/2 then the equation in (3.20) has a unique solution b∗ on the interval
(a′ ∨ b,∞), if −σ2/2 ≤ r − δ < σ2/2 and either the inequality r ≥ δ or the inequalities r < δ
and a′ ≥ b are satisfied then the equation in (3.20) has a unique solution b∗ on the interval
(a′ ∨ b,∞), as well as if r − δ < −σ2/2 then the equation in (3.20) has no solution b∗ on the
interval (a′ ∨ b,∞), so that b∗ =∞ and V2(s; b∗, a

′) ≡ 0.
(iii) When r > (r − δ − σ2/2)2/(2σ2) holds, the function V2(s; b∗, a

′) takes the expression of
(3.30), while if r− δ > σ2/2 then the equation in (3.32) has a unique solution b∗ on the interval
(a′ ∨ b,∞), if −σ2/2 ≤ r − δ < σ2/2 and either the inequality r ≥ δ or the inequalities r < δ
and a′ ≥ b are satisfied then the equation in (3.32) has a unique solution b∗ on the interval
(a′ ∨ b,∞), as well as if r − δ < −σ2/2 then the equation in (3.32) has no solution b∗ on the
interval (a′ ∨ b,∞), so that b∗ =∞ and V2(s; b∗, a

′) ≡ 0.

Proof: In order to verify the assertions stated above, we are left to show that the functions
introduced in (4.1) and (4.2) coincide with the value functions in (2.3), and that the stopping
times τ ∗i , i = 1, 2, in (2.6) are optimal with the boundaries a∗ and b∗ specified above. For
this purpose, let us denote by Vi(s), i = 1, 2, the right-hand sides of the expressions in (4.1)
and (4.2). Then, we may conclude from the equations in (2.11) that the derivatives V ′i (s),
i = 1, 2, are continuously differentiable on (a∗, b

′) and (a′, b∗), respectively. Hence, according to
the conditions of (2.12)-(2.15), applying the change-of-variable formula from [21] (see also [22;
Chapter II, Section 3.5] for a summary of the related results on the local time-space formula as
well as further references), we get

ert Vi(St) = Vi(s) +

∫ t

0

eru (LVi + rVi)(Su)I(Su 6= a∗ orSu 6= b∗) du+M i
t (4.3)

for all t ≥ 0, where the processes M i = (M i
t )t≥0, i = 1, 2, defined by:

M i
t =

∫ t

0

eru V ′i (Su)σ Su dBu (4.4)

are continuous local martingales with respect to the probability measure Ps. Observe that the
time spent by S at the points a∗ and b∗ is of Lebesgue measure zero, and thus, the indicator
which appear in the integral of (4.3) can be ignored (see, e.g. [8; Chapter II, Section 1]).

By using straightforward calculations and the arguments from the previous section, it is
verified that the inequalities (LVi + rVi)(s) ≥ 0, i = 1, 2, hold, for all s < b′ such that s 6= a∗
or s > a′ such that s 6= b∗, respectively. Moreover, it is shown by means of standard arguments
that the inequalities in (2.16) hold, which together with the conditions of (2.12)-(2.15) imply
that Vi(s) ≤ Gi(s), i = 1, 2, holds, for all s < b′ or s > a′, respectively. Hence, the expression
in (4.3) yields that the inequalities

erτi Gi(Sτi) ≥ erτi Vi(Sτi) ≥ Vi(s) +M i
τi

(4.5)

hold for any stopping times τi, i = 1, 2, of the process S started at s > 0. Let (κn
i )n∈N be

arbitrary localising sequences of stopping times for the processes M i, i = 1, 2, respectively.
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Taking in (4.5) the expectation with respect to the measure Ps, by means of the optional
sampling theorem (see, e.g. [15; Chapter I, Theorem 3.22]), we get that the inequalities

Es
[
er(τi∧κ

n
i )Gi(Sτi∧κn

i
)
]
≥ Es

[
er(τi∧κ

n
i ) Vi(Sτi∧κn

i
)
]

(4.6)

≥ Vi(s) + Es
[
M i

τi∧κn
i

]
= Vi(s)

hold, for all s > 0 and every i = 1, 2. Hence, letting n go to infinity and using Fatou’s lemma,
we obtain

Es
[
erτi G(Sτi)

]
≥ Es

[
erτi V (Sτi)

]
≥ Vi(s) (4.7)

for any stopping times τi, i = 1, 2, and all s > 0. By virtue of the structure of the stopping
times in (2.6), it is readily seen that the equalities in (4.7) hold with τ ∗i instead of τi, i = 1, 2,
when either s ≤ a∗ or s ≥ b∗.

It remains us to show that the equalities are attained in (4.7) when τ ∗i replace τi, i = 1, 2, for
a∗ < s < b′ or a′ < s < b∗, respectively. By virtue of the fact that the functions V1(s; a∗, b

′) and
V2(s; b∗, a

′) and the boundaries a∗ and b∗ satisfy the conditions in (2.11) and (2.12), it follows
from the expression in (4.3) and the structure of the stopping times in (2.6) that the equalities

er(τ
∗
i ∧κn

i ) Vi(Sτ∗i ∧κn
i
) = Vi(s) +M i

τ∗i ∧κn
i

(4.8)

are satisfied, for all a∗ < s < b′ or a′ < s < b∗, and any localising sequence (κn
i )n∈N of M i,

i = 1, 2. Observe that the form of the gain functions Gi(s) together with the explicit expressions
for the candidate value functions in (3.7)-(3.8), (3.17)-(3.18), and (3.29)-(3.30) yield that the
conditions

Es

[
sup
t≥0

er(τ
∗
i ∧t) Vi(Sτ∗i ∧t)

]
<∞ (4.9)

hold, for all a∗ < s < b′ and a′ < s < b∗, as well as the variables erτ
∗
Vi(Sτ∗i ) are bounded

on the events {τ ∗i = ∞}, i = 1, 2 (Ps-a.s.). Hence, taking into account the property in (4.9),
we conclude from the expression in (4.8) that the processes (M i

τ∗i ∧t
)t≥0, i = 1, 2, are uniformly

integrable martingales. Therefore, taking the expectations in (4.8) and letting n go to infinity,
we apply the Lebesgue dominated convergence theorem to obtain the equalities

Es
[
erτ
∗
i Gi(Sτ∗i )

]
= Es

[
erτ
∗
i Vi(Sτ∗i )

]
= Vi(s) (4.10)

for all a∗ < s < b′ and a′ < s < b∗, and every i = 1, 2. The latter, together with the inequalities
in (4.7), implies the fact that Vi(s) coincide with the value functions V ∗i (s), i = 1, 2, from (2.3).
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