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Summary. The regression discontinuity (RD) design is a quasi-experimental design which
emulates a randomized study by exploiting situations where treatment is assigned according to
a continuous variable as is common in many drug treatment guidelines.The RD design literature
focuses principally on continuous outcomes. We exploit the link between the RD design and
instrumental variables to obtain an estimate for the causal risk ratio for the treated when the
outcome is binary. Occasionally this risk ratio for the treated estimator can give negative lower
confidence bounds. In the Bayesian framework we impose prior constraints that prevent this
from happening. This is novel and cannot be easily reproduced in a frequentist framework. We
compare our estimators with those based on estimating equation and generalized methods-of-
moments methods. On the basis of extensive simulations our methods compare favourably with
both methods and we apply our method to a real example to estimate the effect of statins on
the probability of low density lipoprotein cholesterol levels reaching recommended levels.
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1. Introduction

A regression discontinuity (RD) design is a quasi-experimental method for treatment effect
estimation, which was introduced in the 1960s in Thistlethwaite and Campbell (1960) and is
widely used in economics and related social sciences (Imbens and Lemieux, 2008) and more
recently in the medical sciences (Geneletti et al., 2015; Bor et al., 2014; Smith et al., 2015;
Moscoe et al., 2015; Linden et al., 2006). The RD design has become of interest in the context
of public health as it enables the use of routinely gathered medical data to evaluate the causal
effects of drugs when these are prescribed according to well-defined decision rules. This can be
very useful as government agencies such as the Federal Drug Administration in the USA and the
National Institute for Health and Care Excellence (NIHCE) in the UK are increasingly issuing
guidelines for drug prescription. Currently the fact that we can use the guidelines to estimate
causal effects is an unintended side product of the guidelines. However, we can imagine a future
where RD designs will be planned to understand where, in the range of a continuous health
outcome, administering a drug is most beneficial to patients.
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Unlike in most of the RD design literature, which focuses on continuous outcomes, our
motivating example is the estimation of the effect of statins (a class of cholesterol lowering drugs)
on the probability of low density lipoprotein (LDL) cholesterol levels reaching two separate
targets as recommended by the NIHCE. We thus develop a Bayesian approach for binary
outcomes, which are frequently of primary interest in healthcare contexts. Our model aims to
estimate a risk ratio directly, rather than through the commonly used odds ratio approximation.
These two measures are of course similar only in the case where the underlying event of interest
has a low probability of occurrence. However, in several applications (including ours), the ‘rare
disease’ assumption does not hold, which means that the output of standard methods (e.g.
logistic regression) does not allow the assessment of the actual problem in a principled way.

Especially in the case where the guidelines are not strictly followed by practitioners (a situation
termed ‘fuzzy RD’, which we describe formally in Section 2), the RD design naturally leads to
an instrumental variable (IV) analysis. Indeed, causal effects from fuzzy RD designs are usually
estimated by using methods from the IV literature for both continuous and binary outcomes
(Lee and Lemieux, 2010; Angrist et al., 1996; Clarke and Windmeijer, 2012). In particular, for
a binary outcome, an IV-based multiplicative structural mean model (MSMM) is often used.

In the context of the IV-based MSMM, several estimators are available to estimate the risk
ratio for the treated (RRT), which is a measure of the change in risk for those who received
a treatment—the binary analogue of the effect of treatment on the treated (Clarke and Wind-
meijer, 2010, 2012; Hernan and Robins, 2006; Abadie, 2002). However, these are all developed
under a frequentist approach to statistical inference. In this paper, we develop a Bayesian ap-
proach to the estimation of the RRT, within the context of a fuzzy RD design. The use of a
Bayesian approach has several benefits when compared with frequentist methods. Firstly, we
obtain the variances of our estimates from our posterior samples directly without having to
use bootstrapping or other variance approximation approaches (e.g. the delta method). The
Bayesian MSMM RRT estimator is very flexible as we can estimate its components by using a
large number of models. Finally we can impose prior constraints on the MSMM estimator for
the RRT as it is known to misbehave occasionally (Clarke and Windmeijer, 2010) in that the
lower limits of 95% confidence intervals may be negative. Our prior constraints may prevent
the posterior Markov chain Monte Carlo (MCMC) sample from dropping below zero. This is a
novel implementation of prior constraints and, although possible, is more difficult to reproduce
in a frequentist context. Using these prior constraints also helps to produce intuitive and stable
uncertainty intervals. We compare our estimators with those based on the MSMM (Clarke et al.,
2015) and the logistic structural mean model (LSMM) (Vansteelandt et al., 2011; Vansteelandt
and Goetghebeur, 2003; van der Laan et al., 2007) among others. In simulations our methods
compare favourably with these frequentist estimators. This is especially true in contexts where
confounding is strong.

An open question in the RD design literature is how small the distance—bandwidth—between
the units and the threshold must be for the RD design to be valid (Imbens and Kalyanaraman,
2012; Calonico et al., 2015). We do not directly tackle this question here. Instead we adopt the
‘local’ regression approach (Imbens and Lemieux, 2008) for four bandwidths and assess the
sensitivity of our results to these changes.

The paper is organized as follows: in Section 2 we briefly describe the RD design and introduce
our example. Section 2.3 lays out our notation and assumptions. In Section 3 we describe in
detail our models as well as giving a short overview of the most commonly used competing
methods. We present the results of a simulation study in Section 4. Section 5 follows with the
results of the real application. We finish with some discussion in Section 6. Additional analyses
and plots are available in the on-line supplementary material.
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2. Background and example

An analysis based on the RD design is appropriate for public health interventions that are
implemented according to pre-established guidelines. Specifically, when a decision rule is based
on whether a continuous variable exceeds a certain threshold, it becomes possible to implement
the RD design. In our running example we use data from the Health Improvement Network
(THIN), which is a UK data set which consists of routine patient data from clinical practice. We
investigate the effect of prescribing statins, a class of cholesterol lowering drugs, on reaching
the NIHCE recommended LDL cholesterol targets of below 2 or 3 mmol l−1 for healthy and
high risk patients respectively. Between 2008 and 2014 NIHCE guidelines recommended that
statins should be prescribed to patients whose 10-year cardiovascular risk score exceeded 20%
provided that they had no history of cardiovascular disease. If we are willing to assume that
individuals just above and below the 20% threshold are exchangeable—an essential condition
for causal inference in the RD design—then we have a quasi-randomized trial with those just
below the threshold randomized to the no-treatment ‘arm’ and those just above randomized
to the treatment arm. Thus any jump or discontinuity in the values of the outcome across the
threshold can be interpreted as a local causal effect or risk ratio in the case of binary outcomes.

There are two types of RD design. The first is termed sharp and refers to the situation where
the guidelines are adhered to strictly. In our application we would encounter a sharp RD design
if all the doctors complied with the NIHCE guidelines and prescribed statins exclusively to
patients with a 10-year cardiovascular risk score above 20%. In practice this is often not so, and
our application makes no exception. There is some ‘contamination’ whereby individuals whose
risk score lies below the threshold are prescribed statins whereas others whose risk score lies
above the threshold receive no prescription. This situation is termed a fuzzy RD design. These
concepts are easier to understand with the help of plots as shown in the next section.

2.1. Data
The data that we consider are a subset of THIN data. The THIN data are primary care data
for over 500 practices in the UK and include a large number of individual patient, diagnostic
and prescription information. We focus on a subset of 1386 male patients between the ages of
50 and 70 years who did not smoke or have diabetes in the year 2008.

2.2. Exploratory plots for the regression discontinuity design
We present examples of sharp and fuzzy designs as well as both continuous and binary outcomes
from our application. In all figures the circles are individuals who do not have statin prescriptions
whereas crosses represent those who do have statin prescriptions. We plot the mean of the
outcome (continuous or binary) within bins of the risk score (x-axis) against the risk score and
fit a cubic spline. The reason for using this plot is that in particular when the design is fuzzy the
spline will show a jump at the threshold indicating the presence of a discontinuity and thus a
potential causal effect around the threshold.

Fig. 1(a) shows data that are obtained from the real data by removing all the individuals who
have a statin prescription below the threshold and do not have a statin prescription above the
threshold—a sharp design situation. The y-axis is a continuous measure of LDL cholesterol
levels in millimoles per litre—the outcome. The x-axis is the risk score centred at 0.2—the so-
called running variable. There is a small but noticeable downward jump at the threshold. This
can be seen as evidence of a discontinuity around the threshold and the jump can be seen as
representing the effect of the statin prescription. Fig. 1(b) is a similar plot, but with the raw
probability of treatment above and below the threshold on the y-axis. Again there is a clear
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jump from 0 to 1 in probability of receiving a statin prescription. Figs 1(c) and 1(d) are the
real data from our application. It is clear that the design is fuzzy as there are circles above the
threshold and crosses below. Despite the fuzziness there is still a small downward jump at the
threshold as shown in Fig. 1(c). Fig. 1(d) is the corresponding raw probability plot. The increase
in probability is more gradual but there is a distinct jump at the threshold. On the basis of these
plots we would be happy to proceed to an RD design analysis of the data with LDL cholesterol
level as a continuous outcome variable (Geneletti et al., 2015).

We now show the plots for the two binary outcomes of interest: LDL cholesterol dropping
below 2 mmol l−1 for high risk patients and below 3 mmol l−1 for healthy patients. High risk
patients were those with one additional risk factor such as smoking or diabetes (see the on-line
supplementary materials for further details). Looking at Fig. 2, a small jump can be seen for
LDL cholesterol level going below 3 mmol l−1 in healthy patients (Fig. 2(a)) and a larger jump
for the probability of treatment (Fig. 2(b)). For the high risk patients there is no discernible jump
in LDL cholesterol level going below 2 mmol l−1 (Fig. 2(c)): just a steady increase. However,
there is evidence of a jump in the probability of being treated for such patients (Fig. 2(d)). Taken
together, there appears to be sufficient support for an RD design analysis for healthy and high
risk patients. The lack of a clear jump in the outcome plot might be because high risk individuals
are more likely to have received statins for other conditions (e.g. high blood pressure) before
being diagnosed with high cholesterol. If we had failed to see evidence of a jump in both outcome
and treatment plots then we would not have proceeded with an RD design analysis. This would
indicate that the general practitioners (GPs) are not complying with the guidelines sufficiently
to be able to make reliable inference.

2.3. Assumptions and notation
For the RD design to be appropriate, some formal assumptions also must hold. These assump-
tions can be formulated in different ways (Hahn et al., 2001; Imbens and Lemieux, 2008; van der
Klaauw, 2008; Lee, 2008) and we give a brief overview of them, as described in more detail in
Geneletti et al. (2015). In the binary outcome case we need to make additional assumptions to
identify the RRT (Didelez et al., 2010; Hernan and Robins, 2006). We express our assumptions
in the language of conditional independence following Dawid (1979). We refer to our example
to anchor the theoretical arguments, although generalizing to other contexts is straightforward.

Let X be the 10-year cardiovascular risk score. The threshold indicator Z represents the
NIHCE treatment guidelines and is such that Z = 1 if X � 0:2 and Z = 0 if X < 0:2. Let T

represent statin prescription (not whether the patient takes the treatment); T = 1 means that
statins are prescribed and T = 0 means that they are not. Also, let C = {O ∪ U} be the set
of relevant pretreatment confounders, where O and U indicate fully observed and partially or
fully unobserved variables respectively. Confounders of interest include age, ethnicity and socio-
economic status where typically age and ethnicity are observed but socio-economic status is not.
Y is the binary outcome variable where Y =1 if LDL cholesterol is below 2 (or 3) mmol l−1 and
y =0 otherwise.

To reflect the fact that these assumptions are valid only around the threshold, we assume
throughout the paper an additional conditioning on X∈ [0:2, 0:2+h] if above the threshold and
X∈ [0:2 −h, 0:2] below the threshold for some suitably small h. We do not explicitly write this
conditioning except where necessary.

2.4. Regression discontinuity design assumptions
The first three RD design assumptions are essentially IV assumptions—where Z is the
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instrument—whereas the fourth is specific to the RD design. See Geneletti et al. (2015) for
more details and interpretation.

Assumption 1 (association of treatment with threshold indicator: Z �⊥⊥T ). Statin prescription
(T ) must be associated with the NIHCE treatment guidelines (Z).

Assumption 2 (independence of guidelines: Z ⊥⊥C | .X/). The NIHCE guidelines (Z) cannot
depend on any of the characteristics of the patient (C) excluding X. A weaker version (i.e. within
strata of O) is Z ⊥⊥ U | .X, O/. We can think of this as the RD design applied within strata of
the observed confounders, e.g. by considering statin prescription for men only.

Assumption 3 (unconfoundedness: Y ⊥⊥ Z | .T , C, X/). For the RD design to be a valid ran-
domization device, whether the LDL cholesterol level (Y ) is below 2 (or 3) mmol l−1 must be
independent of the NIHCE guidelines (Z) conditionally on the other variables (Lee, 2008).

Assumption 4 (continuity). The expectation of the outcome E.Y |X, C, Z, T = t/ is continuous
at X=x0 for t ∈{0, 1}.

2.4.1 Weak instruments
Broadly speaking when the threshold indicator Z is a poor predictor of the treatment T , i.e. the
correlation between them is low, Z becomes a weak instrument. Typically the ‘fuzzier’ the RD
design, the weaker the IV is and the smaller the bandwidth (and thus the sample size) the more
the weakness of the IV becomes problematic. A weak IV can lead to causal effect estimates that
are overly biased towards the unadjusted observational effect (Burgess and Thompson, 2012). It
can also lead to a lack of identification for a class of semiparametric models, e.g. the generalized
method of moments (Clarke and Windmeijer, 2010; Burgess et al., 2014).

In our simulations (Section 4) we consider two levels of instrument strength which we term
weak and strong. Our definition of IV strength does not correspond directly to that in Stock
and Yogo (2005). However, their definitions are based on the linear case which do not have an
obvious translation into the binary case that we are tackling. Thus we propose an ‘operational
definition’ that is unique to the RD design based on looking at plots like those in Fig. 2. If there
is no indication of a jump—in either outcome or treatment plots—we do not proceed with an
RD design analysis. When we say that an IV is weak in our simulations we mean that a jump
can still be discerned in the plots but that any additional weakening of the T –X-relationship
results in no visible jump. In our analysis (Section 5.1) we perform a number of weak IV tests to
ensure that the threshold indicator is not weak (Stock and Yogo, 2005; Burgess et al., 2014). We
appreciate that these may not be exactly suited to binary outcomes but they can be informative.

2.5. Risk ratio for the treated estimator and associated assumptions
We estimate risk ratios in our analysis as these are of primary interest and most suited to our
method of analysis. In the epidemiological literature odds ratios are usually estimated as they
are easily obtained from logistic regressions. However, simple estimators of causal odds ratios
are typically more biased than risk ratio estimators (Didelez et al., 2010), and in our case the
rare disease assumption does not hold, making the odds ratio approximation less than ideal.

We focus on estimating the RRT, which is defined as follows:

log
{

E1.Y |Z, T = t/

E0.Y |Z, T = t/

}
=ρt .1/

where Et is the expectation under the interventional regime where T = t. Following Geneletti and
Dawid (2010) we can think of ρ1 (where conditioning on T =1 indicates the effect on the treated)
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as a comparison between the GP–patient pairs randomized to statins versus those randomized
to no treatment for those GP–patient pairs where the GP wanted to treat the patients. Although
equation (1) is written in terms of unobserved interventional regimes ρ1 can be identified by
using an observational RD design when Y , Z and T are binary if in addition to assumptions
1–4 the following assumptions hold (Didelez et al., 2010; Clarke et al., 2015).

Assumption 5 (log-linear in t). log{E1.Y |T = t, Z=z/}− log{E0.Y |T = t, Z=z/} is linear in
the treatment.

Assumption 6 (no T –Z-interaction in Y on the multiplicative scale). This assumption is known
as the no effect modification assumption.

Assumption 5 is trivial when Y , Z and T are binary: however, we list it here for completeness.
Assumption 6 requires that whether the LDL cholesterol level is below 2 (or 3) mmol l−1 does
not depend on an interaction term between T (statin prescription) and Z (whether the risk score
exceeds 20% on the log-scale). If there were an interaction term it would mean that the GPs
above and below the threshold would be different with respect to their ability to predict the
outcome. As we are looking at individuals around the threshold whom we already consider
to be exchangeable in some way, we are willing to assume that there is no interaction. When
assumptions 1–4 and 5 and 6 hold, we can directly apply estimators that have been derived in
the binary IVs literature in the context of the RD design. Thus we obtain the following formula
(Hernan and Robins, 2006; Clarke and Windmeijer, 2010):

̂exp.ρ1/=RRT=1− E.Y |Z =1/−E.Y |Z =0/

E.YT̄ |Z =1/−E.YT̄ |Z =0/
, .2/

where T̄ = 1 −T . Equivalent expressions and details of their derivation and interpretation can
be found in Didelez et al. (2010), Abadie (2003) and Angrist (2001). Note that equation (2) is
based on an approximation of the true causal model. Here, the term ‘true causal model’ refers
to the model from which data originate. Since the true model is assumed to be log-linear in t,
this implies that the RRT estimator satisfies

E.Y |T = t, Z/= exp.α+βt/:

3. Models

The models in Sections 3.2 and 3.3 are embedded in a Bayesian framework, and code that
was used to run the models by using JAGS (Plummer, 2003) is available in the on-line sup-
plementary material. We first obtain a full posterior MCMC sample for each of the relevant
parameters in the models described in Section 3.2 and combine these to induce a posterior
sample for the RRT. When prior constraints are added in Section 3.3, we sample the RRT
directly. From the posterior samples we easily obtain variances and interval estimates without
having to rely on bootstrap methods or asymptotic arguments, as is required with the frequentist
estimators.

We note here that our focus is on obtaining the posterior distribution of the RRT, rather than
on the joint posterior of the parameters that are used to estimate the RRT (i.e. the posterior
distributions for E.Y |Z/ and E.YT̄ |Z/, constructed by using a full specification of the joint
distribution for Y , T and Z and the confounders U). Naturally, our chosen model relies on
fewer parametric assumptions when compared with a fully joint model. In addition, our models
are, in general, easier to fit and interpret by using standard MCMC algorithms.
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We present some possible models to estimate the components. We mostly use the same type
of model in the numerator and the denominator. However, we do mix different models in the
numerator and denominator where we consider this necessary. Generally speaking we write the
estimates for the RRT as RRTnum:denom where ‘num’ indicates the form of the numerator and
‘denom’ the denominator in the fraction in equation (2).

3.1. Interaction versus product models
The denominator of the fraction in the expression for the RRT (henceforth only ‘the denomi-
nator’) is given by E.YT̄ |Z =1/−E.YT̄ |Z =0/. We can break up the individual terms further
as follows:

E.YT̄ |Z = z/=E.Y | T̄ , Z = z/E.T̄ |Z = z/: .3/

In our analysis, we produce estimates for both of these models. We call interaction models those
which use the formulation on the left-hand side of equation (3) and product models those that
use the formulation on the right-hand side. Our motivation for including analyses with the
product of two conditional probabilities as in equation (3) is that the data for the product term
are sparse (see the on-line supplementary material). By using Y alone this is mitigated. We also
consider zero-inflated Poisson regression models (Lambert, 1992) to address this but the results
are not substantially different.

3.2. Poisson regression models
In the first set of models that we considered, all components in the RRT are estimated by using
Poisson regression models, in line with assumption 5. Assuming a Poisson sampling distribution
for the outcome naturally accounts for the fact that the observed discrete counts are positive,
as well as the log-linearity of the mean and the interpretation of the treatment effect as a risk
ratio. One potential limitation is using the Poisson model, which implies equality of the mean
and variance. However, particularly within the Bayesian approach, this can be easily overcome
by simply including structured (‘random’) effects, to account for overdispersion.

It is easy to verify that if the same parametric form can be assumed to hold for experimental
and observational regimes then a log-linear relationship in t follows for each of the components
of equation (2).

We set XÅ =X−0:2 and fit Poisson regressions in both the numerator and the denominator:

numerator :=
{

yiz ∼Poisson.μiz /,
log.μiz /=αz +βzx

Å
iz

;

denominator :=
{

yt̄iz ∼Poisson.νiz /,
log.νiz /= δz +γzx

Å
iz

with priors αz, βz, δz, γz ∼IID N.0, 100/, iz =1, : : : , nz and z∈{0, 1} throughout.
We assign relatively vague priors on the regression coefficients. Tighter priors such as those

suggested in Gelman et al. (2008) have been considered, but the results are not very sensitive
to the choice of prior, at least for the specific data at hand. As we centre the risk score at the
threshold, the parameter of interest in all the regressions is the exponential of the intercept term.
The posterior MCMC samples of the parameters α1, α0, δ1 and δ0 can be used to characterize
E.Y |Z = 1/, E.Y |Z = 0/, E.YT̄ |Z = 1/ and E.YT̄ |Z = 0/ respectively and then combined to
obtain the posterior sample for the RRT. The model described above has the interaction model
denominator:
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RRTpois:pois =1− Πpois

Ψpois

where

Πpois = exp.α1/− exp.α0/

and

Ψpois = exp.δ1/− exp.δ0/:

We also consider an interaction model where the denominator is based on a flexible binomial
model as used in Geneletti et al. (2015). In this model the prior information is used to create
distance between the two elements in the denominator of the fraction in the RRT in equation (2).
This often stabilizes the results because it pushes the difference in the probability of treatment
at the threshold away from zero and thus inflates the fraction in equation (2). In this case the
denominator is defined as

yt̄iz ∼binomial.qz, nz/,

priors

logit.q1/∼N.−3, 1/

and

logit.q0/∼N.3, 1/

so that Ψflex =q1 −q0.
This results in the interaction model

RRTpois:flex =1− Πpois

Ψflex
:

We now consider the product denominator as follows:

Denominator.prod=
{

yiz ∼Poisson.θiz/,
log.θiz /= δz +γzxiz +κzt̄iz ,
tiz ∼binomial.nz, rz/,

priors

logit.r1/∼N.−3, 1/

and

logit.r0/∼N.3, 1/:

We then combine the conditional probabilities as follows:

E.YT̄ |Z = z/= .δz +κz/rz,

as we are interested in the case where both Y and T̄ are equal to 1. Note that we use the binomial
flex model again for the probability of T̄ as this was less variable than regression-based models,
in this case. Thus we obtain RRTpois:prod:flex as follows:

RRTpois:prod:flex =1− Πpois

Ψprod
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where

Πpois = exp.α1/− exp.α0/

and

Ψprod = exp.δ1 +κ1/r1 − exp.δ0 +κ0/r0:

3.3. Constraints
The RRT can drop below zero if the fraction in equation (2) exceeds 1 (Clarke and Windmeijer,
2010). We avoid this problem by imposing a priori constraints on the distribution of the RRT
which force the RRT to remain within acceptable bounds.

Imposing prior constraints is straightforward in the Bayesian framework. We place a gamma
prior on the RRT with most of the mass close to 1, as we do not want to encourage an arbitrarily
large risk ratio. The most straightforward constraint was to make α1 a function of the other
variables above the threshold so that we could place a prior on the RRT. We could equally have
chosen α0. We write out the changes that the model implies to the priors below:

RRTpois:pois ∼gamma.3, 1/

and

α1 = log{.1−RRTpois:pois/Ψpois + exp.α0/}
where exp.α1/ − exp.α0/ =Πpois and there is of course no prior on α1 (whose distribution is
induced by the logical relationships that were specified above). Similar changes can be made to
all the RRTs with any of the other models presented in Section 3. It is also possible to impose
constraints on logistic-regression-based estimates.

We also tried to impose constraints on the intercept in the denominator δ1 for RRTpois:pois.
However, the results were more variable even though point estimates remained in the same
region.

3.4. Frequentist estimators: multiplicative and logistic structural mean models
To assess the performance of our Bayesian estimators, we compared them with some of the most
common estimators for binary outcomes in the IV literature. These include the MSMM (Clarke
et al., 2015), the double LSMM (Vansteelandt et al., 2011; Vansteelandt and Goetghebeur,
2003; van der Laan et al., 2007), the Wald risk ratio (Didelez et al., 2010) and a final method
based on a single estimating equation (Burgess et al., 2014). We give an overview of the MSMM
and LSMM below. Details of all the frequentist estimators including moment conditions and
additional assumptions for identification can be found for all listed methods in the on-line
supplementary material.

Clarke et al. (2015) showed that the semiparametric MSMM estimator in equation (2) can be
estimated efficiently by the generalized method of moments and we also relied on this method
to obtain the estimates. However, generalized method-of-moments estimators can lead to a lack
of identification in binary outcome situations. This is amplified when the instrument is weak
(Burgess et al., 2014). This could potentially be the reason for the erratic behaviour that we see
in small bandwidths and when the threshold instrument is weak in our simulation studies.

The LSMM as defined by Vansteelandt and Goetghebeur (2003) can be used to estimate the
causal odds ratio for a binary outcome in the presence of an instrument. A potential problem
is that the odds ratio is non-collapsible which means that logistic regression equivalents of
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assumptions 5 and 6 are not sufficient to identify the causal odds ratio. It can be identified if we
specify logit{E.Y |Z, T/}= lp.X, T/ where lp is a linear predictor. However, unless the lp-model
is saturated, it will be uncongenial (i.e. correspond to a different data-generating mechanism) to
the LSMM. Vansteelandt et al. (2011) argued that this is not a problem in practice. Our results
show that the LSMM produces highly variable results when the instrument is weak and/or
bandwidths are small and is typically close to the MSMM. It also dramatically overestimates
the true effect when it is high. This may be a consequence of the violation of the rare disease
assumption.

4. Simulation study

We set up a simple simulation study aimed at examining the properties of the models that were
presented in Section 3. We considered two levels of unobserved confounding U, two levels of IV
strength Z and three causal effects resulting in 12 simulation scenarios. We based our simulated
data set on the larger data set from which the set that was described in Section 2 and is analysed
in Section 5 was obtained. We used the original values for the risk score X and the standardized
high density lipoprotein cholesterol level as unobserved confounder U. The threshold indicator
Z was defined deterministically as Zi =0 if Xi < 0:2 and Zi =1 otherwise. For each simulation
we run the analyses in each of four bandwidths identified by values h={0:025, 0:05, 0:075, 0:1}
and assess the sensitivity of the results to these changes.

The simulated data-generating process for the treatment or outcome is as follows: first we
linked the probability of receiving treatment p1 =P.T = 1/ and outcome p2 =P.Y = 1/ with a
confounding variable U and the threshold indicator Z. We then used the observed U and Z and
generated the treatment status T and the outcome Y respectively based on p1 and p2 respectively.
Specifically the treatment was simulated as

p1,i =min{1, exp.−2:5+ ξ1Zi + ξ2Ui/}
and

Ti ∼Bernoulli.p1,i/:

For the values of ξ1 ∈{1:3, 2:3} (weak and strong IV) and ξ2 ∈{0:4, 2} (low and high confound-
ing) we obtain different settings of strength of instrument and unobserved confounding.

The outcome was then simulated as

p2,i =min{1, exp.−2+ ζ1Zi + ζ2Ui/}
and

Yi ∼Bernoulli.p2,i/

where ζ2 = ξ2=4 and ζ1 ∈{0, 0:75, 1:5}, so that we obtain three different risk ratios: 1, 2.11 and
4.48 corresponding to no, low and high causal effect. We ran 100 replications each with 7500
MCMC runs for burn-in and a further 15000 iterations of which the last 1000 were used for
estimation. We ran diagnostics on a random selection of simulation runs and were satisfied that
convergence was reached on all relevant parameters (see the on-line supplementary material for
diagnostics).

We note here that the risk ratios corresponding to no, low and high casual effects depend on
the level of truncation owing to the specifications of p1, i and p2, i and may not be ‘exactly’ 1, 2.11
and 4.48 depending on the level of truncation within this specification. This is not likely to be
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problematic in our simulations, where the level of truncation is negligible. However, for situations
in which the level of truncation is thought to be high, Monte Carlo methods could be used on a
large sample to estimate the ratio for those for whom T =1. In addition, the change in bandwidth
within the simulation set-up does not imply a change in the exchangeability assumption. Rather,
as the bandwidth decreases, the sample size reduces and, as such, a change in bandwidth should
be considered as analogous to a change in sample size in the simulation set-up.

We produced exploratory plots like those introduced in Section 2 for all simulated scenarios.
Briefly, for high causal effects all scenarios showed a clear jump at the threshold although it was
smaller in the weak IV–high confounding scenario. For the low causal effects the results were
variable. No jump was discernible in the weak IV–high confounding scenario in the outcome
probabilities but a small jump was discernible in the probability of treatment. A clear jump was
visible for both outcome and probability in the strong IV scenarios. Finally for the no-effect
scenarios no jump was visible as expected. A selection of plots can be seen in the the on-line
supplementary material section 2.

We obtained results for Bayesian constrained and unconstrained models as well as a num-
ber of frequentist estimates and the Balke–Pearl bounds which are available from the authors
on request. In the body of the paper we present only results for the constrained models as in
many scenarios (in particular for small bandwidths, high confounding and weak instruments)
the posterior MCMC sample for the unconstrained models contained values below 0. In addi-
tion, although convergence was reached for the relevant parameters, there were some extreme
results due to small values in the denominator that occasionally led to inflated mean estimates.
Medians for the unconstrained models and means for the constrained models were generally
close although the constrained model estimates were typically smaller (see the supplementary
material). We thought that this might be due to the gamma prior pulling the RRT in the con-
strained models towards 1. However, on investigation we saw that results were not sensitive to
the choice of prior.

Fig. 3 shows the results over 100 replications of four estimators in three out of 12 simulated
scenarios.

In Fig. 3(a) the risk ratio is 4.48, the confounding is low and the instrument is strong. It can
be seen as the ‘best case’ scenario. The Bayesian and MSMM estimators perform well with the
latter performing slightly better. The LSMM overestimates the true effect dramatically. This is
echoed in the real data analysis in the next section.

In Fig. 3(b) the risk ratio is 2.11, the confounding is high and the instrument is weak. This is the
‘worst-case’ scenario. Overall the Bayesian estimators outperform the frequentist approaches.
They are stable if non-significant across all bandwidths with point estimates close to the true
value. Both the MSMMs and the LSMMs are very sensitive to bandwidth.

Results in Fig. 3(c) are for the low confounding and weak instrument scenario when the true
risk ratio is 2.11. The Bayesian estimators are close to the true value throughout with good
mean-squared error (MSE) and coverage although they remain non-significant (albeit barely)
for all bandwidths. In the smallest bandwidth both the MSMM and the LSMM have very high
means (over 31000 and 1 million respectively) and large confidence intervals. Medians are in line
with the Bayesian means. Point estimates improve for the frequentist estimators and become
(barely) significant for the highest bandwidth.

Finally Fig. 3(d) represents the scenario with a high level of confounding, weak instrument and
no effect. The MSMM and LSMM perform well in the 0.05-bandwidth and the latter performs
better for the larger bandwidths. The Bayesian estimators overestimate the true effect—in fact
they are close to the observational unadjusted risk ratio, which is 2.18. This is not surprising
or particularly worrying. The RD design analysis relies on being able to estimate a jump in the
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Fig. 3. Comparison of the results of pois.flex ( ), pois.prod.flex ( ), MSMM () and LSMM () in four out of 12
simulated scenarios for the constrained models (for each estimator, the coloured line represents the upper
and lower 95% quantiles over the 100 replicates whereas the dots represent the mean value; the true risk
ratio is shown by the horizontal line and, in case the true effect differs from 1, the broken line indicates the
absence of effect): (a) low confounding, strong IV, RR D 4.48; (b) high confounding, weak IV, RR D 2.11; (c)
low confounding, weak IV, RRD2.11; (d) high confounding, weak IV, RRD1

outcome at the threshold. When this is not present as in this scenario it makes sense that it
would revert to the observational estimate. In this case we would not recommend an RD design
because the RD plots (like those in Fig. 2) do not exhibit a jump. It is encouraging that over the
replicates they cover the true null effect.

More details of the simulation studies corresponding to Fig. 3 (including the MSEs and
coverage) can be found in the on-line supplementary materials.

Overall the Bayesian estimators are robust to changes in IV strength, confounding levels
and size of causal effect. For small bandwidths in particular the Bayesian estimator compares
favourably with the competing methods in the borderline cases: the credible intervals always
include the true value, and the simulation MSE and coverage are above 90% in all cases. The
frequentist approaches are not as consistent. For example, the MSMM is unreliable when the
instrument is weak. The LSMM performs better than the MSMM but is also sensitive to band-
width and size of effect, something which had also been noted by Clarke and Windmeijer (2010).
The MSE and coverage were also more variable. We show the results for three scenarios here, the
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‘worst’ and ‘best case’ and an intermediate case. For the other scenarios the results fall between
the two extremes. The Bayesian estimators consistently produce stable and reliable estimates.

A possible reason for the robustness of Bayesian estimators in the extreme scenarios is that
continuous information is used in estimating the components of the RD design whereas the
frequentist estimates are based on binary data only and treat the RD design as a standard IV
problem. Although our approach is robust, it does not perform well in the worst-case scenario
when the effect is null. We are not overly concerned with this, however, as in these cases no RD
design analysis is recommended.

Our prior constraints are very strong and we assessed how much results were affected. Counter
to our expectation the results from our simulations and applied example constraining the models
to be above zero did not result in higher RRT estimates; nor were results very sensitive to prior
specification. Specifically varying the values of the gamma distribution on the RRT (e.g. by
moving the mass further from 1) or even using a different prior with positive support (i.e. log-
normal) did not alter the results substantially. Instead the constrained models stabilized the
posterior MCMC sample.

5. Example: statin prescription

Using the THIN data (which were introduced in Section 2.1), we shall investigate whether or
not statin prescription lowers the LDL cholesterol to below 2 and 3 mmol l−1, recommended
levels for high and low risk individuals respectively. We have performed analyses for the two risk
groups separately but the results do not differ substantially and we focus here on all the patients.

From trials (Ward et al., 2007) we know that statins are effective in lowering cholesterol. As
LDL cholesterol tends to decrease quickly within a month of uptake and our data span the
6 months around the cholesterol measurement we can use our binary outcomes RD design to
determine whether statins result in people achieving LDL cholesterol targets within a small time
window. Our approach is also useful when we are interested in whether a drug acts on a relevant
marker of a disease which is easier to measure and is affected quickly by treatment.

5.1. Preliminary analyses
Before estimating the RRT we investigated whether a Poisson regression was an appropriate
model for the data. The model fit was good overall and there was no evidence for overdispersion.

In line with recent recommendations regarding what should be presented in IV analyses
(Swanson and Hernan, 2013) we performed F -tests to determine IV weakness for non-linear sit-
uations (Windmeijer and Didelez, 2016) for both binary outcomes (LDL level below 2 and below
3 mmol l−1). The F -values ranged from 10 (for bandwidth 0.025) to 211 (for bandwidth 0.1) with
p-values significant at the 5% level throughout. We also produced estimating functions (Burgess
et al., 2014) that are shown in the on-line supplementary materials. These indicated that for our
data it was possible to find unique solutions to the MSMM and LSMM moment conditions. The
Balke–Pearl bounds (Balke and Pearl, 1997; Palmer et al., 2011) were also in line with our results.

Finally, we performed the McCrary density test (McCrary, 2008) which detects whether there
is a discontinuity at the threshold in the running variable (in our case the risk score). If the result
is significant any effect that we observe might be due to the discontinuity in the running variable.
The result was non-significant at the 5% level.

5.2. Main analysis
We fitted our models by using JAGS (Plummer, 2003) with two chains, a burn-in of 10000
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Table 1. Results for estimates of the constrained RRTs, as well as the MSMM and
LSMM estimator†

Model Results for LDL< 3 mmol l−1 Results for LDL< 2 mmol l−1

Mean L95 U95 Mean L95 U95

h=0:025
pois.flex 3.12 1.32 5.62 2.59 0.86 5.57
pois.pois 3.98 1.32 8.16 2.96 0.89 6.42
pois.prod.flex 3.89 1.11 6.16 2.77 0.77 5.81
MSMM 3.99 1.30 12.21 8.39 1.49 47.37
LSMM 21.3 4.42 102.6 13.7 2.12 87.9

h=0:05
pois.flex 3.95 1.51 7.39 2.59 0.99 4.91
pois.pois 4.01 1.12 7.93 2.81 0.85 5.92
pois.prod.flex 4.17 1.08 8.14 2.64 0.85 5.34
MSMM 4.53 2.29 8.93 4.49 3.04 29.62
LSMM 17.2 6.66 44.2 13.9 4.12 47.3

h=0:075
pois.flex 3.76 1.48 7.84 2.63 1.02 4.76
pois.pois 4.33 1.47 8.60 3.19 0.95 6.13
pois.prod.flex 4.60 1.57 8.60 2.80 1.01 5.33
MSMM 4.22 2.55 7.03 6.68 3.07 14.56
LSMM 15.7 7.60 32.6 9.30 3.98 21.8

h=0:1
pois.flex 3.69 1.42 6.82 2.32 1.30 3.70
pois.pois 4.02 1.37 7.60 2.68 1.02 7.13
pois.prod.flex 3.99 1.36 7.58 2.70 1.31 4.86
MSMM 3.76 2.60 5.44 7.36 3.73 14.55
LSMM 13.7 7.89 23.8 10.3 4.92 21.6

†Means and 95% credible or confidence intervals are provided. The second to fourth columns
are for the case where the target value of the outcome is 3 mmol l−1 whereas the last three
are for an outcome threshold equal to 2 mmol l−1.

iterations and a further 50000 iterations. Our posterior samples were based on the last 1000 iter-
ations. On average each model took 5 min to run on a standard personal computer. Convergence
was reached for all relevant parameters and mixing was good. See the on-line supplementary
material.

Overall the results indicate a positive effect of statin treatment on LDL cholesterol levels for
patients in our sample with a large (if not universally significant) twofold to threefold increase
in the probability of achieving the target LDL cholesterol level within 6 months of prescription
for those prescribed relative to those eligible. This is especially true for the target of reducing
the LDL cholesterol level to below 3 mmol l−1.

Table 1 shows for each bandwidth the mean and lower and upper 95% interval estimates for
the RRT with constrained models the MSMM and the LSMM.

Generally, constrained Bayesian estimates are similar and increase slightly as the bandwidth
increases. The point estimates for LDL less than 3 mmol l−1 are slightly larger (3.1–4.6) than
those for LDL less than 2 mmol l−1 (2.5–3.2 except h = 0:1) and are significant. The median
LDL cholesterol level for the untreated is 4 mmol l−1, so a drop of 2 mmol l−1 LDL will be less
frequent and lead to less significant results. The results are also very stable across bandwidths.
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The plots in Fig. 4 show the RRT estimates for the unconstrained models in Fig. 4(a) and the
constrained models in Fig. 4(b) for LDL level below 3 mmol l−1. We can see that in particular for
the low bandwidths where the data are sparse the estimates by using the unconstrained models
are very variable. Similar plots displaying a similar pattern for the LDL level below 2 mmol l−1

are given in the supplementary material. Overall the constrained estimates both reduce vari-
ability and remain above 0 and the means for the constrained and medians for unconstrained
modes are similar.

When we compare the results of the MSMM estimator with ours we see that for the LDL level
below 3 mmol l−1 the scenarios are broadly similar. For the outcome LDL below 2 mmol l−1,
however, the results are different. For all the bandwidths the means of the MSMM are high and
the intervals are wide. The LSMM consistently overestimates the effect and this is aggravated
for small bandwidths and higher effects. We see similar behaviour in the simulation studies.

6. Conclusions

In this paper we use the RD design to develop a flexible Bayesian method to estimate the causal
effect of treatments for binary outcomes. Using our proposed method routinely gathered medical
data can be exploited to estimate the effects of government drug administration guidelines. We
focus on the causal risk ratio for the treated as this is of primary interest to medical practitioners.

Our RRT estimates are based on the structural mean model assumptions (Clarke and Wind-
meijer, 2010; Hernan and Robins, 2006). This estimator is known to produce values below 0.
We avoid this by imposing prior constraints. The fact that the RRT as identified by equation (2)
has no built-in safeguard to dropping below 0 raises some questions about its appropriateness
as a risk ratio estimator. It is not easy to identify causal quantities when all elements are binary
and as a consequence some strong assumptions must be met. It is likely that some will hold
only approximately. If we suspect that assumptions 1–4 do not hold then there is no point in
attempting an RD design analysis or estimating the RRT from these data; however, if we think of
assumptions 5 and 6 as holding only approximately around the threshold then we can view this
as a model misspecification problem and the RRT as an approximation to the true underlying
effect. In this paper, we chose to focus on Bayesian estimation of the RRT. We note that a similar
approach could be applied to other risk ratio estimators (e.g. the Wald risk ratio estimator).

Our results compared favourably with the MSMMs and the SMMs as well as other frequentist
estimators. In particular they were more robust to weak instruments, high levels of confounding
and low effects in the simulation studies. They also produced more credible results in our appli-
cation. On the basis of our simulation study they also outperform the frequentist estimators in
terms of the MSE and coverage especially in small bandwidths.

We preferred Poisson regression-based models on theoretical grounds and because in the RD
design we need to use a continuous threshold variable. However, we also implemented models
that are identical to those we propose where logarithms are replaced by logits and exponentials
with expits. Further we tried zero-inflated Poisson regression models and binomial models. The
results are broadly similar especially for the regression-based models. JAGS code for some of
these models is given in the on-line supplementary materials and results are available on request.
It is also feasible to use spline or other semiparametric models.

We included only the running variable in our regression; however, it is possible to add more
covariates if data are available. The resulting effect estimates would then be conditional on these
covariates.

We found that in the simulation studies, and indeed in the application, the method proposed
gave the most reliable and realistic results. However, we recommend that anyone attempting an
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RD design analysis, especially for binary outcomes, follow a procedure that is similar to ours.
This includes some preliminary analyses from plots to tests of IV weakness and then using a
range of numerator–denominator combinations within our framework. This will ensure that if
there is an effect it can be identified as lying within a reliable range.

Acknowledgements

We thank the Joint Editor and two referees for their comments and suggestions. The paper has
greatly benefitted from their input. This research has been funded by UK Medical Research
Council grant MR/K014838/1. Approval for this study was obtained from the THIN Scientific
Review Committee in August 2014.

References

Abadie, A. (2002) Bootstrap tests for distributional treatment effects in instrumental variable models. J. Am.
Statist. Ass., 97, 284–292.

Abadie, A. (2003) Semiparametric instrumental variable estimation of treatment response models. J. Econmetr.,
113, 231–263.

Angrist, J. (2001) Estimation of limited dependent variable models with dummy endogenous regressors: simple
strategies for empirical practice. J. Bus. Econ. Statist., 19, 2–16.

Angrist, J. D., Imbens, G. W. and Rubin, D. B. (1996) Identification of casual effects using instrumental variables.
J. Am. Statist. Ass., 91, 444–455.

Balke, A. and Pearl, J. (1997) Bounds on treatment effects from studies with imperfect compliance. J. Am. Statist.
Ass., 92, 1171–1176.

Bor, J., Moscoe, E., Mutevedzi, P., Newell, M. L. and Barnighausen, T. (2014) Regression discontinuity designs
in epidemiology: causal inference without randomized trials. Epidemiology, 25, 729–737.

Burgess, S., Granell, R., Palmer, T. M., Sterne, J. A. C. and Didelez, V. (2014) Lack of identification in semipara-
metric instrumental variable models with binary outcomes. Am. J. Epidem., 180, 111–119.

Burgess, S. and Thompson, S. G. (2012) Improving bias and coverage in instrumental variable analysis with weak
instruments for continuous and binary outcomes. Statist. Med., 31, 1582–1600.

Calonico, S., Cattaneo, M. D. and Titiunik, R. (2015) Robust nonparametric confidence intervals for regression
discontinuity designs. Econometrica, 82, 2295–2326.

Clarke, P. S., Palmer, T. M. and Windmeijer, F. (2015) Estimating structural mean models with multiple instru-
mental variables using the generalised method of moments. Statist. Sci., 30, 96–117.

Clarke, P. and Windmeijer, F. (2012) Instrumental variable estimators for binary outcomes. J. Am. Statist. Ass.,
107, 1638–1652.

Clarke, P. S. and Windmeijer, F. (2010) Identification of causal effects on binary outcomes using structural mean
models. Biostatistics, 11, 756–770.

Dawid, A. P. (1979) Conditional independence in statistical theory (with discussion). J. R. Statist. Soc. B, 41,
1–31.

Didelez, V., Meng, S. and Sheehan, N. A. (2010) Assumptions of IV methods for observational epidemiology.
Statist. Sci., 25, 22–40.

Gelman, A., Aleks, J., Pittau, M. and Su, Y. (2008) A weakly informative default prior distribution for logistic
and other regression models. Ann. Appl. Statist., 2, 1360–1383.

Geneletti, S. and Dawid A. (2010) The effect of treatment on the treated: a decision theoretic perspective. In
Causality in the Sciences (eds M. Ilari, F. Russo and J. Williamson). Oxford: Oxford University Press.

Geneletti, S., O’Keeffe, A. G., Sharples, L. D., Richardson, S. and Baio, G. (2015) Bayesian regression discontinuity
designs: incorporating clinical knowledge in the causal analysis of primary care data. Statist. Med., 34, 2334–
2352.

Hahn, J., Todd, P. and van der Klaauw, W. (2001) Identification and estimation of treatment effects with a
regression-discontinuity design. Econometrica, 69, 201–209.

Hernan, M. and Robins, J. (2006) Instruments for causal inference—an epidemiologist’s dream? Epidemiology,
17, 360–372.

Imbens, G. and Kalyanaraman, K. (2012) Optimal bandwidth choice for the regression discontinuity estimator.
Rev. Econ. Stud., 79, 933–959.

Imbens, G. W. and Lemieux, T. (2008) Regression discontinuity designs: a guide to practice. J. Econmetr., 142,
615–635.

van der Klaauw, G. (2008) Regression-discontinuity analysis: a survey of recent developments in economics.
Labour, 22, 219–245.



20 S. Geneletti, F. Ricciardi, A. G. O’Keeffe and G. Biao

van der Laan, M. J., Hubbard, A. and Jewell, N. P. (2007) Estimation of treatment effects in randomized trials
with non-compliance and a dichotomous outcome. J. R. Statist. Soc. B, 69, 463–482.

Lambert, D. (1992) Zero-inflated Poisson regression, with an application to defects in manufacturing. Techno-
metrics, 34, 1–14.

Lee, D. S. (2008) Randomized experiments from non-random selection in US House elections. J. Econmetr., 142,
675–697.

Lee, D. S. and Lemieux, T. (2010) Regression discontinuity designs in economics. J. Econ. Lit., 48, 281–355.
Linden, A., Adams, J. and Roberts, N. (2006) Evaluating disease management programme effectiveness: an in-

troduction to the regression discontinuity design. J. Evaln Clin. Pract., 12, 124–131.
McCrary, J. (2008) Manipulation of the running variable in the regression discontinuity design: a density test.

J. Econmetr., 142, 698–714.
Moscoe, E., Bor, J. and Baernighausen, T. (2015) Regression discontinuity designs are underutilized in medicine,

epidemiology, and public health: a review of current and best practice. J. Clin. Epidem., 68, 132–143.
Palmer, T. M., Ramsahai, R. R., Didelez, V. and Sheehan, N. A. (2011) Nonparametric bounds for the causal

effect in a binary instrumental-variable model. Stata J., 11, 345–367.
Plummer, M. (2003) Jags: a program for analysis of Bayesian graphical models using Gibbs sampling.
Smith, L. M., Kaufman, J. S., Strumpf, E. C. and Levesque, L. E. (2015) Effect of human papillomavirus (HPV)

vaccination on clinical indicators of sexual behaviour among adolescent girls: the Ontario Grade 8 HPV Vaccine
Cohort Study. Can. Med. Ass. J., 187, E74–E81.

Stock, J. and Yogo, M. (2005) Testing for Weak Instruments in Linear IV Regression, pp. 80–108. New York:
Cambridge University Press.

Swanson, S. and Hernan, M. A. (2013) How to report instrumental variable analyses (suggestions welcome).
Epidemiology, 24, 1044–3983.

Thistlethwaite, D. and Campbell, D. (1960) regression-discontinuity analysis—an alternative to the ex-post-facto
experiment. J. Educ. Psychol., 51, 309–317.

Vansteelandt, S., Bowden, J., Babanezhad, M. and Goetghebeur, E. (2011) On instrumental variables estimation
of causal odds ratios. Statist. Sci., 26, 403–422.

Vansteelandt, S. and Goetghebeur, E. (2003) Causal inference with generalized structural mean models. J. R.
Statist. Soc. B, 65, 817–835.

Ward, S., Jones, L., Pandor, A., Holmes, M., Ara, R., Ryan, A., Yeo, W. and Payne, N. (2007) A systematic review
and economic evaluation of statins for the prevention of coronary events. Hlth Technol. Assessmnt, 11, 1–160.

Windmeijer, F. and Didelez, V. (2016) Methods for binary outcomes. In Mendelian Randomization: How Genes
Can Reveal the Biological and Environmental Causes of Disease (ed. G. Davey-Smith). Oxford: Oxford University
Press. To be published.

Supporting information
Additional ‘supporting information’ may be found in the on-line version of this article:

‘Bayesian modelling for binary outcomes in the regression discontinuity design supplementary materials’.


