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We study a credit risk model for a financial market in which the local drift rate of
the logarithm of the intensity of the default time changes at the times at which certain
unobservable external events occur. The risk-neutral dynamics of the default intensity
are described by a generalised geometric Brownian motion and the changes of the local
drift rate arrive at independent exponential times. We obtain closed form expressions for
the rational values of defaultable European-style contingent claims through the filtering
estimates of the occurrence of switching times given the filtration generated by the default
intensity process.

1 Introduction

In this paper, we consider a credit risk model in which the drift rate of the default intensity
process changes its form at some unobservable random times. Such a model is related to a
financial market in which the occurrence of some external events leads to structural changes
in the default intensity rate under the risk-neutral probability measure. For instance, such a
situation may happen when the failure of a large industrial company or some important political
decision taken by the government can affect the default policy of the issuing firm. Suppose
that the dynamics of the logarithm of the intensity rate of the default time are described by a
generalised geometric Brownian motion with random drift rates changing their values in some
exponentially distributed random times which are independent of each other and of the driving
standard Brownian motion. We derive closed form expressions for the rational (no-arbitrage)
values of some European-type contingent claims in the model of financial market described
above. It is assumed that the payoff of the contingent claims are (measurable) functions of
the default intensity value at the maturity time. Note that the consideration of defaultable
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contingent claims with constant payoffs appears of the same difficulty as of the general ones
studied in the paper.

The present paper continues the study of the information-based approach for derivative
pricing which was initiated by Brody, Hughston, and Macrina [2] for the case of a multi-
dimensional diffusion model with switching random drifts. The paper can also be considered
as a continuation of our research presented in [6]-[7] where we studied the problem of pric-
ing of European-type contingent claims in two-dimensional models with random and switching
dividends. The hidden Markov model with finitely many random changes in the drift rate
of the default intensity process can be considered as an extension of the model with a single
change in the drift rate of observable Brownian motion introduced by Shiryaev [13] (see also
[14; Chapter IV, Section 4] and [15; Chapter IV, Section 4]) with the aim to provide a se-
quential procedure of detecting an unobservable switching (disorder) time. Models with more
complicated hidden continuous-time Markov chains as unobservable signals were studied in the
literature and the corresponding finite-dimensional systems of Markovian filtering estimates
were derived (see, e.g. Liptser and Shiryaev [10; Chapter IX] or Elliott, Aggoun, and Moore [5]
for further developments). The analysis of such models represents an important part of general
stochastic filtering theory (see, e.g. Kallianpur [9] for an extensive overview).

In this paper, we also propose a simple derivation of the multi-dimensional Markovian
system of stochastic differential equations for the posterior probability processes which are
filtering estimates of the occurrence of the switching times driven by an innovation standard
Brownian motion. Since the marginal distribution of the multi-dimensional Markov process
formed by the default intensities together with the resulting posterior probabilities certainly
has a complicated structure, our main tool for the derivation of the pricing formulas for the
contingent claims is based on the application of the so-called key lemma of credit risk theory.
The rational values of the contingent claims are thus expressed through the joint transition
density of an exponential Brownian motion and the associated Lebesgue integral derived by
Yor [16].

The paper is organised as follows. In Section 2, we introduce a model with the default
intensity based on a generalised geometric Brownian motion with switching local drift rates
described above. In Section 3, we derive stochastic differential equations for the posterior
probabilities of the times of occurrence of external events and get explicit expressions for their
conditional probability density given the accessible filtration generated by the default intensity
rate. In Section 4, we obtain closed form expressions for rational prices of European-type
contingent claims under partial information generated by the default intensity process. The
main results of the paper are stated in Propositions 3.1 and 4.1.

2 The model

In this section, we introduce a model of a financial market containing a default time which has
the intensity process modeled by a generalised exponential Brownian motion, with a switching
drift rate.
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2.1 The dynamics of default intensity

Let us suppose that on a probability space (Ω,G, P ) there exists a standard Brownian motion
W = (Wt)t≥0 and independent non-negative random variables ζk , k = 1, . . . , n , n ∈ N , as
well as a random variable U which is uniformly distributed on (0, 1) and independent of the
process W and of the variables ζk , k = 1, . . . , n . Assume for simplicity that the process W
and the variables ζk , k = 1, . . . , n , are independent and the latter have exponential distribution
P (ζk > t) = e−λt , for all t ≥ 0 and some λ > 0. We also define a non-decreasing finite sequence
of random variables (θk)k=1,...,n by θk = ζ1 + ζ2 + · · · + ζk , k = 1, . . . , n . Define the random
time τ by

τ = inf{t ≥ 0 |At ≥ − lnU}, (2.1)

where the process A = (At)t≥0 is given by

At =

∫ t

0

Ys ds (2.2)

for all t ≥ 0, so that A is the cumulative intensity of the random time τ . Assume that the
intensity rate process Y = (Yt)t≥0 admits the representation

Yt = exp

((
β0 −

σ2

2

)
t+

n∑
k=1

(βk − βk−1) (t− θk)+ + σWt

)
(2.3)

and thus, solves the stochastic differential equation

dYt =

(
β0 +

n∑
k=1

(βk − βk−1) I(θk ≤ t)

)
Yt dt+ σ Yt dWt, (2.4)

where (t − θk)+ = max{t − θk, 0} , and I(·) denotes the indicator function, while βk 6= βk−1 ,
k = 1, . . . , n , and σ > 0 are some given constants.

Suppose that τ represents the default time of a firm (reference credit) and the process
Y = (Yt)t≥0 describes the risk-neutral dynamics of the default intensity rate. We assume that
the drift rate of the process lnY changes at the times θk , k = 1, . . . , n , at which some systemic
changes (external events) occur. For instance, such a behavior of the default intensity rate can
be related to the the changes of the economic state of the firm. The purpose of the present
paper is to determine the rational prices of some defaultable European contingent claims with
a fixed time horizon T > 0.

2.2 The rational prices of defaultable European contingent claims

In what follows, we determine the rational (no-arbitrage) prices of European-style contingent
claims with payoffs of the form C(YT ), for some non-negative measurable functions C(y),
y > 0, and a fixed time horizon T > 0. We assume that the information available from the
market is generated by the default intensity rate Y only, that is related to a situation where
the small investors trading in the market cannot observe the times θk , k = 1, . . . , n , at which
the systemic changes (external events) occur. It follows from the so-called key lemma (see, e.g.
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[3; page 122] or [1; Section 5.1]) that the rational (no-arbitrage) price process V = (Vt)t≥0 of
such a claim admits the representation

Vt ≡ E[e−r(T−t)C(YT ) I(T < τ) | Gt] = I(t < τ)E[e−r(T−t)−(AT−At)C(YT ) | Ft] (2.5)

for 0 ≤ t ≤ T , where r ≥ 0 is the interest rate of a riskless bank account and the expectation
is taken with respect to the pricing measure under which the dynamics of Y are given by
(2.3)-(2.4). Here, we define the progressively enlarged filtration (Gt)t≥0 by Gt = Ft ∨ σ(τ ∧ t),
where (Ft)t≥0 is the natural filtration of the process Y given by Ft = σ(Ys | 0 ≤ s ≤ t), for
all t ≥ 0. It is further assumed that all the considered filtrations are regularised to be right-
continuous and completed by all the sets of P -measure zero, so that we actually consider in fact
the smallest right continuous filtration that contains (Ft ∨ σ(τ ∧ t))t≥0 . The filtration (Ft)t≥0
reflects the information flow which is accessible for investors trading in the market, while the
filtration (Gt)t≥0 reflects the accessible information progressively enlarged by the default time
τ .

For simplicity of presentation, in the fourth section of the paper, we shall restrict our
attention to the case of two subsequent systemic changes (external events) n = 2. In this case,
the value of (2.5) can be decomposed as

Vt = I(t < τ)E[e−r(T−t)−(AT−At)C(YT ) I(T < θ1) | Ft] (2.6)

+ I(t < τ)E[e−r(T−t)−(AT−At)C(YT ) I(θ1 ≤ T < θ2) | Ft]
+ I(t < τ)E[e−r(T−t)−(AT−At)C(YT ) I(θ1 < θ2 ≤ T ) | Ft]

for all 0 ≤ t ≤ T . The case of general n ∈ N can be obtained using the same methodology but
with longer computations.

2.3 Some filtrations and distribution laws

In order to compute the conditional expectations in (2.6), let us define the processes Y k =
(Y k

t )t≥0 and Ak = (Akt )t≥0 by

Y k
t = exp

((
βk −

σ2

2

)
t+ σWt

)
and Akt =

∫ t

0

Y k
s ds (2.7)

for every k = 0, 1, . . . , n . Let us now introduce the progressively enlarged filtrations (Gkt )t≥0
by Gk−1t ∨ σ(θk ∧ t), for all t ≥ 0, so that θk is a (Gkt )t≥0 -stopping time, for every k = 1, . . . , n .
Moreover, we define the initially enlarged filtration (Fkt )t≥0 by Fk−1t ∨ σ(θk), for all t ≥ 0 and
every k = 1, . . . , n , where we set G0t = F0

t = σ(Ws | 0 ≤ s ≤ t), for t ≥ 0. Observe that the
inclusion Ft ⊆ Gnt holds, for all t ≥ 0, by construction.

Let us now consider a filtration (Kt)t≥0 larger than the filtration (Ft)t≥0 , that is, Ft ⊆ Kt ,
for all t ≥ 0. Then, if Kt coincides with Ft on the event Jt ∈ Kt , that is, if for any Kt ∈ Kt ,
there exists an event Ft ∈ Ft such that Jt∩Kt = Jt∩Ft , then the random variable E[ZT | Kt] ,
on the set Jt , is equal to an Ft -measurable random variable, which, as in [3; page 122] or [1;
Section 5.1], leads to the equality

I(Jt)E[ZT | Kt]P (Jt | Ft) = I(Jt)E[ZT I(Jt) | Ft] (2.8)
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for each KT -measurable (positive) integrable random variable ZT . In this case, when P (Jt | Ft)
is positive on Jt , we have

I(Jt)E[ZT | Kt] = I(Jt)
E[ZT I(Jt) | Ft]
P (Jt | Ft)

(2.9)

for each KT -measurable integrable random variable ZT . We further refer to the result in
(2.8)-(2.9) as to the generalised key lemma.

As it follows from the results below, the process (Y,A) defined in (2.2) and (2.3) has a com-
plicated Markovian structure on its natural filtration (Ft)t≥0 , so that, the direct computation
of the conditional expectations in (2.5) should be avoided. Therefore, taking into account the
tower property for conditional expectations, we obtain from the expressions in (2.3)-(2.4) that,
in the case n = 2, the value process from (2.5) and (2.6) admits the representation

Vt = I(t < τ)E[E[e−r(T−t)−(AT−At)C(YT ) I(T < θ1) | G2t ] | Ft] (2.10)

+ I(t < τ)E[E[e−r(T−t)−(AT−At)C(YT ) I(θ1 ≤ T < θ2) | G2t ] | Ft]
+ I(t < τ)E[E[e−r(T−t)−(AT−At)C(YT ) I(θ1 < θ2 ≤ T ) | G2t ] | Ft]

for all 0 ≤ t ≤ T .
Let us now refer the explicit expression for the transition density function of the processes

(Y k, Ak), k = 0, 1, . . . , n , defined in (2.7) above. For this purpose, we recall from [16; page 527]

that the random variable A
(ν)
t =

∫ t
0
e2(Ws+νs)ds has the conditional distribution

P
(
A

(ν)
t ∈ da

∣∣∣Wt + νt = x
)

= p(t, x, a) da, (2.11)

where the density function p is given by:

p(t, x, a) =
1

πa2
exp

(
x2 + π2

2t
+ x− 1 + e2x

2a

)
(2.12)

×
∫ ∞
0

exp

(
−w

2

2t
− ex

a
cosh(w)

)
sinh(w) sin

(πw
t

)
dw

with t, a > 0 and x ∈ R , and ν ∈ R given and fixed. This fact yields that the random vector
(2(Wt + νt), A

(ν)
t ) has the distribution

P
(

2(Wt + νt) ∈ dx,A(ν)
t ∈ da

)
= q(t, x, a) dxda, (2.13)

where the density function q is given by

q(t, x, a) = p
(
t,
x

2
, a
) 1

2
√
t

1√
2π

exp

(
− 1

2

(x− 2νt

2
√
t

)2)
(2.14)

=
1

(2π)3/2a2
√
t

exp

(
π2

2t
+
(ν + 1

2

)
x− ν2

2
t− 1 + ex

2a

)
×
∫ ∞
0

exp

(
−w

2

2t
− ex/2

a
cosh(w)

)
sinh(w) sin

(πw
t

)
dw
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with t, a > 0 and x ∈ R (see also [4] and [12] for related expressions in terms of Hermite
functions). Therefore, using the fact that the scaling property of W implies

P

((
βk −

σ2

2

)
t+ σWt ≤ x,

∫ t

0

e(βk−σ
2/2)s+σWs ds ≤ a

)
(2.15)

= P

(
2(Wt′ + νt′) ≤ x,

∫ t′

0

e2(Ws+νs) ds ≤ σ2a

4

)
with t′ = σ2t/4 and ν = 2βk/σ

2 − 1, by virtue of the expressions in (2.13)-(2.14), it follows
from the definition in (2.7) and the Markov property of the process (Y k, Ak), k = 0, 1, . . . , n ,
that the random vector (Y k

T /Y
k
t , (A

k
T − Akt )/Y k

t ) has the distribution

P
(
Y k
T /Y

k
t ∈ dy, (AkT−Akt )/Y k

t ∈ da
)

= P
(
Y k
T−t ∈ dy,AkT−t ∈ da

)
= gk(T−t, y, a) dyda, (2.16)

where the density function gk is given by

gk(T − t, y, a) =
σ2

4y
q

(
σ2

4
(T − t), ln(y),

σ2a

4

)
(2.17)

=
2
√

2

π3/2σ3

1

a2y
√
T − t

exp

(
2π2

σ2(T − t)
+
βk
σ2

ln(y)− (βk/σ − σ/2)2

2
(T − t)− 2(1 + y)

σ2a

)
×
∫ ∞
0

exp

(
− 2w2

σ2(T − t)
−

4
√
y

σ2a
cosh(w)

)
sinh(w) sin

( 4πw

σ2(T − t)

)
dw

for all T − t, y, a > 0. Note that the formulas above were used in [8] for the computation of
the marginal density of the posterior probability process Π1 introduced below.

3 Filtering equations and conditional densities

In this section, we derive stochastic differential equations for the posterior probabilities of
occurrence of external events and their conditional probability density with respect to the
accessible filtration (Ft)t≥0 .

3.1 Posterior probabilities

In our model, the distribution of the process lnY with respect to the probability measure P
has the structure

P (lnY ∈ · ) =

∫ ∞
0

∫ ∞
s1

· · ·
∫ ∞
sn−1

P s1,s2,...,sn(lnY ∈ · )λne−λsn dsn · · · ds2ds1, (3.1)

where P s1,s2,...,sn(lnY ∈ · ) = P (lnY ∈ · | θ1 = s1, θ2 = s2, . . . , θn = sn) are the distribution
laws of the corresponding Brownian motions with diffusion coefficient σ2 and the drift rate
changing from βk−1 − σ2/2 to βk − σ2/2 at the times θk , k = 1, . . . , n .

Taking into account the fact that the probability measure P s1,s2,...,sn is equivalent to P on Ft
by construction, for any 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn ≤ ∞ , applying the generalised Bayes’ formula
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(see, e.g. [10; Theorem 7.23]), we get that the posterior probability processes Πk = (Πk
t )t≥0

defined by Πk
t = P (θk ≤ t | Ft) take the form

Πk
t =

∫ t

0

∫ t

s1

· · ·
∫ t

sk−1

∫ ∞
sk

· · ·
∫ ∞
sn−1

dP s1,s2,...,sn

dP

∣∣∣∣
Ft
λne−λsn dsn · · · ds2ds1 (3.2)

for all t ≥ 0. Moreover, since the measure P s1,s2,...,sk,sk+1,...,sn coincides with P s1,s2,...,sk,t,...,t on
Ft , for all 0 ≤ s1 ≤ s2 ≤ . . . ≤ sk ≤ t ≤ sk+1 ≤ . . . ≤ sn , we see that

Πk
t − Πk+1

t =

∫ t

0

∫ t

s1

· · ·
∫ t

sk−1

∫ ∞
t

∫ ∞
sk+1

· · ·
∫ ∞
sn−1

dP s1,s2,...,sn

dP

∣∣∣∣
Ft
λne−λsn dsn · · · ds2ds1 (3.3)

=

∫ t

0

∫ t

s1

· · ·
∫ t

sk−1

dP s1,s2,...,sk,t,...,t

dP

∣∣∣∣
Ft
λke−λt dsk · · · ds2ds1

is satisfied, where the last equality holds, because the probability measure P s1,s2,...,sn coincides
with P s1,s2,...,sk,t,...,t on Ft , for any 0 ≤ s1 ≤ . . . ≤ sk ≤ t ≤ sk+1 ≤ . . . ≤ sn fixed. By means
of Girsanov’s theorem for diffusion processes (see, e.g. [10; Theorem 7.19]), it follows from the
structure of the observation process lnY that the representations

dP s1,...,sk,sk+1,...,sn

dP t,...,t,t,...,t

∣∣∣∣
Ft

=
dP s1,...,sk,t,...,t

dP t,...,t,t,...,t

∣∣∣∣
Ft

=
k∏
j=1

Ljt

Ljsj
(3.4)

hold for all 0 ≤ s1 ≤ . . . ≤ sk ≤ t ≤ sk+1 ≤ . . . ≤ sn , where the likelihood ratio process
Lj = (Ljt)t≥0 has the form

Ljt = exp

(
βj − βj−1

σ2
lnYt −

(βj − σ2/2)2 − (βj−1 − σ2/2)2

2σ2
t

)
(3.5)

for every j = 1, . . . , k , in terms of the logarithm of the asset price process Y given by

lnYt =
(
β0 −

σ2

2

)
t+

n∑
k=1

(βk − βk−1) (t− θk)+ + σWt (3.6)

for all t ≥ 0 and every k = 0, 1, . . . , n .
It is then shown by means of straightforward calculations that the posterior probabilities

Πk from (3.2) have the form

Π1
t =

Ξn
t

1 + Ξn
t

and Πk
t − Πk+1

t =
Φk
t

1 + Ξn
t

with Ξn
t =

n∑
k=1

Φk
t , (3.7)

where the weighted likelihood ratio processes Φk = (Φk
t )t≥0 are given by

Φk
t =

∫ t

0

∫ t

s1

· · ·
∫ t

sk−1

k∏
i=1

Lit
Lisi

∫ ∞
t

∫ ∞
sk+1

· · ·
∫ ∞
sn−1

λn eλ(t−sn) dsn · · · ds2ds1 (3.8)

=

∫ t

0

∫ t

s1

· · ·
∫ t

sk−1

k∏
i=1

Lit
Lisi

λk dsk · · · ds2ds1

for k = 1, . . . , n .
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3.2 Filtering equations for the posterior probabilities

Applying Itô’s formula (see, e.g. [10; Chapter IV, Theorem 4.4] or [11; Chapter IV, Theo-
rem 3.3]) to the expression in (3.5), we get that the process Lj solves the stochastic differential
equation

dLjt = Ljt
βj − βj−1

σ2

(
d lnYt − (βj−1 − σ2/2) dt

)
(3.9)

with Lj0 = 1. Then, using straightforward computations, we obtain that the processes Φk ,
k = 1, . . . , n , satisfy the equations

dΦk
t = λΦk−1

t dt+
βk − βk−1

σ2
Φk
t

(
d lnYt − (βk−1 − σ2/2) dt

)
(3.10)

with Φ0
t ≡ 1, for k = 1, . . . , n , so that the process Ξn from (3.7) admits the representation

dΞn
t = λ (1 + Ξn

t ) dt+ (1 + Ξn
t )

( n∑
k=1

βk − βk−1
σ2

Πk
t

)(
d lnYt − (β0 − σ2/2) dt

)
. (3.11)

Hence, applying Itô’s formula to the expressions in (3.7), we get

d(Πk
t − Πk+1

t ) = λ (Πk−1
t − 2Πk

t + Πk+1
t ) dt (3.12)

+ (Πk
t − Πk+1

t )

( k∑
i=1

βi − βi−1
σ

(1− Πi
t)−

n∑
j=k+1

βj − βj−1
σ

Πj
t

)
dW t

for k = 1, . . . , n , where we set Π0
t ≡ 1. Thus, the processes Πk solve the stochastic differential

equations

dΠk
t = λ (Πk−1

t − Πk
t ) dt (3.13)

+

(
Πk
t

k∑
j=1

βj − βj−1
σ

(1− Πj
t) + (1− Πk

t )
n∑

j=k+1

βj − βj−1
σ

Πj
t

)
dW t

for k = 1, . . . , n . Here, the innovation process W = (W t)t≥0 defined by

W t =
1

σ

(
lnYt −

∫ t

0

(
β0 −

σ2

2
+

n∑
k=1

(βk − βk−1) Πk
s

)
ds

)
(3.14)

is a standard Brownian motion under the probability measure P , with respect to the filtration
(Ft)t≥0 , according to P. Lévy’s characterisation theorem (see, e.g. [10; Theorem 4.1] or [11;
Chapter IV, Theorem 3.6]).

3.3 Conditional densities of the switching times

Let us now find an expression for the family of conditional probability density processes
(αt(u1, u2, . . . , un))t≥0 defined from the expression

P (θ1 > u1, θ2 > u2, . . . , θn > un | Ft) (3.15)

=

∫ ∞
u1

∫ ∞
u2

. . .

∫ ∞
un

αt(v1, v2, . . . , vn) I(v1 < v2 < . . . < vn)λn e−λvn dv1dv2 . . . dvn
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for all u1 < u2 < . . . < un and t ≥ 0. It follows from the straightforward computations above
that the the processes (αt(u1, u2, . . . , un))t≥0 admit the representations

αt(u1, u2, . . . , un) =
eλt

1 + Ξn
t

L1
t

L1
u1∧t

L2
t

L2
u2∧t
· · · Lnt

Lnun∧t
(3.16)

for all u1 < u2 < . . . < un and t ≥ 0. Here, the processes Lj , j = 1, . . . , n , and Ξn are defined
in (3.5) and (3.7) above. Furthermore, taking into account the structure of the processes Πk

and Φk , k = 1, . . . , n , in (3.2) and (3.8), by means of standard arguments, we can verify that∫ ∞
0

∫ ∞
0

· · ·
∫ ∞
0

αt(u1, u2, . . . , un) I(u1 < u2 < . . . < un)λne−λun du1du2 · · ·un = 1 (3.17)

as expected. This shows the regularity of the family of conditional probability density processes
(αt(u1, u2, . . . , un))t≥0 , for any u1 < u2 < . . . < un fixed.

Summarising the facts proved above, let us formulate the following assertion.

Proposition 3.1. In the model for Y of (2.3)-(2.4) with partial information contained
in (Ft)t≥0 , the posterior probability (Π1,Π2, . . . ,Πn) from (3.7) is an n-dimensional while
(Y,Π1,Π2, . . . ,Πn) forms an n+ 1-dimensional time-homogeneous Markov process. Moreover,
the conditional probability density αt(u1, u2, . . . , un) defined in (3.15) admits the representation
of (3.16), for any u1 < u2 < . . . < un fixed, where the processes Lj , j = 1, . . . , n, and Ξn are
given by (3.5) and (3.7), respectively.

4 Computation of the rational prices

In this section, we compute the three conditional expectations of the expressions in (2.6) and
(2.10) corresponding to the case n = 2. The computation of the appropriate terms correspond-
ing to the case of general n ∈ N can be obtained using the same methodology but with longer
computations. To simplify the notations, without loss of generality, we further assume that
the payoffs are already discounted by the dynamics of the bank account, that is equivalent to
letting the interest rate r equal to zero.

4.1 The first term

Let us begin by computing the first term in (2.6). For this purpose, we first observe that the
equalities YT = Y 0

T and AT − At = A0
T − A0

t hold on the event {T < θ1} and note that G2t
coincides with G1t on the event {t < θ1} , and thus, the generalised key lemma in (2.8)-(2.9)
yields that

E[e−(AT−At)C(YT ) I(T < θ1) | G2t ] = I(t < θ1)E[e−(A
0
T−A

0
t )C(Y 0

T ) I(T < θ1) | G1t ] (4.1)

holds, for all 0 ≤ t ≤ T , where we have used the fact that P (t < θ1 | G1t ) = I(t < θ1).
Then, using the fact that (G1t )t≥0 and (F0

t )t≥0 coincide on {t < θ1} and that the probability

9



P (t < θ1 | F0
t ) is positive on that event, taking into account the independence of the exponential

random variable ζ1 and the process Y 0 , we get

E[e−(A
0
T−A

0
t )C(Y 0

T ) I(T < θ1) | G1t ] = I(t < θ1)
E[e−Y

0
t (A

0
T−A

0
t )/Y

0
t C(Y 0

T ) I(T < θ1) | F0
t ]

P (t < θ1 | F0
t )

(4.2)

= I(t < θ1)C0(T − t, Y 0
t ) = I(t < θ1)C0(T − t, Yt)

for 0 ≤ t ≤ T . Here, by virtue of the independence of ζ1 ≡ θ1 and Y 0 , as well as the Markov
property of the process (Y 0, A0), and the fact that the random variable Y 0

s /Y
0
t has the same

law as Y 0
s−t , for each 0 ≤ t ≤ s fixed, we have

C0(T − t, y) = E[e−yA
0
T−t C(yY 0

T−t)]P (T < ζ1)/P (t < ζ1) (4.3)

= e−λ(T−t)
∫ ∞
0

∫ ∞
0

e−yaC(yz) g0(T − t, z, a) dzda

and the function g0 is given in (2.17) above. Hence, by means of the tower property for
conditional expectations, using the fact that the arguments from the previous section yield
P (t < θ1 | Ft) = 1− Π1

t , we obtain from (4.1) and (4.2) that

E[e−(AT−At)C(YT ) I(T < θ1) | Ft] = P (t < θ1 | Ft)C0(T − t, Yt) = (1− Π1
t )C0(T − t, Yt) (4.4)

holds, for all 0 ≤ t ≤ T , where the function C0(T − t, y) is given by (4.3) above.

4.2 The second term

Let us continue with computing the second term in (2.6). For this purpose, we observe that
the equalities Ys/Yt = Y 1

s /Y
1
t for t ≤ s ≤ T and AT −At = Yt(A

1
T −A1

t )/Y
1
t hold on the event

{θ1 ≤ t ≤ T < θ2} , while the equality Yt(Yθ1/Yt)(Ys/Yθ1) = Y 0
t (Y 0

θ1
/Y 0

t )(Y 1
s /Y

1
θ1

) holds on the
event {t < θ1 ≤ s < θ2} for s ≤ T and AT − Aθ1 + Aθ1 − At = Y 0

θ1
(A1

T − A1
θ1

)/Y 1
θ1

+ A0
θ1
− A0

t

holds on {t < θ1 ≤ T < θ2} , so that

E[e−(AT−At)C(YT ) I(θ1 ≤ T < θ2) | G2t ] (4.5)

= E[e−(AT−At)C(Yt(YT/Yt)) I(θ1 ≤ t < T < θ2) | G2t ]
+ E[e−(AT−Aθ1 )−(Aθ1−At)C(Yt(Yθ1/Yt)(YT/Yθ1)) I(t < θ1 ≤ T < θ2) | G2t ]

= I(θ1 ≤ t < θ2)E[e−Yt(A
1
T−A

1
t )/Y

1
t C(Yt(Y

1
T /Y

1
t )) I(T < θ2) | G2t ]

+ I(t < θ1)E[e−Y
0
θ1

(A1
T−A

1
θ1

)/Y 1
θ1
−(A0

θ1
−A0

t )C(Y 0
t (Y 0

θ1
/Y 0

t )(Y 1
T /Y

1
θ1

)) I(t < θ1 ≤ T < θ2) | G2t ]

holds, for all 0 ≤ t ≤ T . Observe that G2t coincides with F1
t on the event {θ1 ≤ t < θ2} ,

and thus, we can apply the generalised key lemma for the filtrations (G2t )t≥0 and (F1
t )t≥0 on

{θ1 ≤ t < θ2} to obtain

I(θ1 ≤ t < θ2)E[e−Yt(A
1
T−A

1
t )/Y

1
t C(Yt(Y

1
T /Y

1
t )) I(T < θ2) | G2t ] (4.6)

=
I(θ1 ≤ t < θ2)

P (θ1 ≤ t < θ2 | F1
t )
E[e−Yt(A

1
T−A

1
t )/Y

1
t C(Yt(Y

1
T /Y

1
t )) I(T < θ2) | F1

t ]

= I(θ1 ≤ t < θ2)C
0
1(T − t, Yt)
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for 0 ≤ t ≤ T . Here, using the fact that the F1
t -measurable random variable Yt is independent

of Y 1
T /Y

1
t on the event {θ1 ≤ t ≤ T < θ2} , by virtue of the independence of the exponential

random variables ζ1 ≡ θ1 , ζ2 ≡ θ2− θ1 , and the process Y 1 , as well as the Markov property of
the process (Y 1, A1), and the fact that the random variable Y 1

s /Y
1
t has the same law as Y 1

s−t ,
for each 0 ≤ t ≤ s fixed, we have

C0
1(T − t, y) = E[e−yA

1
T−t C(yY 1

T−t)]P (T < ζ1 + ζ2 | ζ1)/P (t < ζ1 + ζ2 | ζ1) (4.7)

= e−λ(T−t)
∫ ∞
0

∫ ∞
0

e−yaC(yz) g1(T − t, z, a) dzda

for 0 ≤ t ≤ T , and the function g1 is given in (2.17) above. Note that the expression in (4.7)
does not depend on ζ1 , because of the exponential distribution of the random variable ζ2 and
the independence between ζ1 and ζ2 . Hence, by means of the tower property for conditional
expectations and the fact that the arguments from the previous section yield P (θ1 ≤ t <
θ2 | Ft) = Π1

t − Π2
t , we obtain from (4.5) and (4.6) that

E[e−(AT−At)C(YT ) I(θ1 ≤ t < T < θ2) | Ft] (4.8)

= P (θ1 ≤ t < θ2 | Ft)C0
1(T − t, Yt) = (Π1

t − Π2
t )C

0
1(T − t, Yt)

holds, for all 0 ≤ t ≤ T , where the function C0
1(T − t, y) is given in (4.7) above.

Now, taking into account the fact that G2t coincides with F0
t on the event {t < θ1} , we can

apply the generalised key lemma for the filtrations (G2t )t≥0 and (F0
t )t≥0 to get

I(t < θ1)E[e−Y
0
θ1

(A1
T−A

1
θ1

)/Y 1
θ1
−(A0

θ1
−A0

t )C(Y 0
t (Y 0

θ1
/Y 0

t )(Y 1
T /Y

1
θ1

)) I(t < θ1 ≤ T < θ2) | G2t ] (4.9)

= I(t < θ1)
E[e−Y

0
θ1

(A1
T−A

1
θ1

)/Y 1
θ1
−(A0

θ1
−A0

t )C(Y 0
t (Y 0

θ1
/Y 0

t )(Y 1
T /Y

1
θ1

)) I(t < θ1 ≤ T < θ2) | F0
t ]

P (t < θ1 | F0
t )

= I(t < θ1)C
1
1(T − t, Y 0

t ) = I(t < θ1)C
1
1(T − t, Yt)

for all 0 ≤ t ≤ T . Here, by virtue of the independence of the exponential random variables
ζ1 ≡ θ1 , ζ2 ≡ θ2 − θ1 , and Y k , k = 0, 1, as well as the Markov property of the processes
(Y k, Ak), k = 0, 1, and the fact that the random variables Y k

s /Y
k
t have the same laws as Y k

s−t ,
k = 0, 1, for each 0 ≤ t ≤ s , we have

C1
1(T − t, y) = E[e−yA

0
ζ1−t Ĉ1

1(T − ζ1, yY 0
ζ1−t) I(t < ζ1 ≤ T )]/P (t < ζ1) (4.10)

=

∫ T

t

∫ ∞
0

∫ ∞
0

e−ya Ĉ1
1(T − u, yz)λe−λ(u−t) g0(u− t, z, a) dudzda

with

Ĉ1
1(T − u, y) = E[e−yA

1
T−u C(yY 1

T−u)]P (T − u < ζ2) (4.11)

= e−λ(T−u)
∫ ∞
0

∫ ∞
0

e−yaC(yz) g1(T − u, z, a) dzda

for 0 ≤ t < u ≤ T , and the functions gk , k = 0, 1, are given in (2.17) above. By means of the
tower property, we therefore obtain from (4.9) that

E[e−(AT−At)C(YT ) I(t < θ1 ≤ T < θ2) | Ft] (4.12)

= P (t < θ1 | Ft)C1
1(T − t, Yt) = (1− Π1

t )C
1
1(T − t, Yt)

holds, for all 0 ≤ t ≤ T , where the function C1
1(T − t, y) is given in (4.10)-(4.11) above.
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4.3 The third term

Let us complete with computing the third term in (2.6). For this purpose, we observe that
the equalities Ys/Yt = Y 2

s /Y
2
t for t ≤ s ≤ T and AT − At = Yt(A

2
T − A2

t )/Y
2
t hold on the

event {θ1 < θ2 ≤ t} , the equality Yt(Yθ2/Yt)(Ys/Yθ2) = Yt(Y
1
θ2
/Y 1

t )(Y 2
s /Y

2
θ2

) holds on the event
{θ1 ≤ t < θ2 ≤ s} for s ≤ T and AT − Aθ2 + Aθ2 − At = Yt(Y

1
θ2
/Y 1

t )(A2
T − A2

θ2
)/Y 2

θ2
+

Yt(A
1
θ2
−A1

t )/Y
1
t holds on {θ1 ≤ t < θ2 ≤ T} , while the equality Yt(Yθ1/Yt)(Yθ2/Yθ1)(Ys/Yθ2) =

Y 0
t (Y 0

θ1
/Y 0

t )(Y 1
θ2
/Y 1

θ1
)(Y 2

s /Y
2
θ2

) holds on the event {t < θ1 < θ2 ≤ s} for s ≤ T and AT −Aθ2 +
Aθ2−Aθ1+Aθ1−At = Y 0

t (Y 0
θ1
/Y 0

t )(Y 1
θ2
/Y 1

θ1
)(A2

T−A2
θ2

)/Y 2
θ2

+Y 0
t (Y 0

θ1
/Y 0

t )(A1
θ2
−A1

θ1
)/Y 1

θ1
+A0

θ1
−A0

t

holds on {t < θ1 < θ2 ≤ T} , so that

E[e−(AT−At)C(YT ) I(θ2 ≤ T ) | G2t ] (4.13)

= E[e−(AT−At)C(Yt(YT/Yt)) I(θ1 < θ2 ≤ t) | G2t ]
+ E[e−(AT−Aθ2 )−(Aθ2−At)C(Yt(Yθ2/Yt)(YT/Yθ2)) I(θ1 ≤ t < θ2 ≤ T ) | G2t ]
+ E[e−(AT−Aθ2 )−(Aθ2−Aθ1 )−(Aθ1−At)C(Yt(Yθ1/Yt)(Yθ2/Yθ1)(YT/Yθ2)) I(t < θ1 < θ2 ≤ T ) | G2t ]
= I(θ1 < θ2 ≤ t)E[e−Yt(A

2
T−A

2
t )/Y

2
t C(Yt(Y

2
T /Y

2
t )) | G2t ]

+ I(θ1 ≤ t < θ2)E[e−Yt(Y
1
θ2
/Y 1
t )(A

2
T−A

2
θ2

)/Y 2
θ2
−Yt(A1

θ2
−A1

t )/Y
1
t C(Yt(Y

1
θ2
/Y 1

t )(Y 2
T /Y

2
θ2

)) I(t < θ2 ≤ T ) | G2t ]

+ I(t < θ1)E[e−Y
0
t (Y

0
θ1
/Y 0
t )(Y

1
θ2
/Y 1
θ1

)(A2
T−A

2
θ2

)/Y 2
θ2
−Y 0

θ1
(A1
θ2
−A1

θ1
)/Y 1

θ1
−(A0

θ1
−A0

t )

× C(Y 0
t (Y 0

θ1
/Y 0

t )(Y 1
θ2
/Y 1

θ1
)(Y 2

T /Y
2
θ2

)) I(t < θ1 < θ2 ≤ T ) | G2t ]

holds, for all 0 ≤ t ≤ T . Firstly, taking into account the fact that G2t coincides with F2
t on the

event {θ1 < θ2 ≤ t} , by virtue of the Markov property of the process (Y 2, A2), and the fact
that the random variable Y 2

s /Y
2
t has the same law as Y 2

s−t , for each 0 ≤ s ≤ t , we get

I(θ1 < θ2 ≤ t)E[e−Yt(A
2
T−A

2
t )/Y

2
t C(Yt(Y

2
T /Y

2
t )) | G2t ] (4.14)

= I(θ1 < θ2 ≤ t)E[e−Yt(A
2
T−A

2
t )/Y

2
t C(Yt(Y

2
T /Y

2
t )) | F2

t ] = I(θ1 < θ2 ≤ t)C0
2(T − t, Yt),

where

C0
2(T − t, y) = E[e−yA

2
T−t C(y(Y 2

T /Y
2
t ))] =

∫ ∞
0

∫ ∞
0

e−yaC(yz) g2(T − t, z, a) dzda (4.15)

and the function g2 is given in (2.17) above. Hence, using the tower property, we obtain from
(4.13) and (4.14) that

E[e−(AT−At)C(YT ) I(θ1 < θ2 ≤ t) | Ft] (4.16)

= P (θ1 < θ2 ≤ t | Ft)C0
2(T − t, Yt) = Π2

t C
0
2(T − t, Yt)

holds, for all 0 ≤ t ≤ T , where the function C0
2(T − t, y) is given in (4.15) above.

Secondly, taking into account the fact that G2t coincides with F2
t on the event {θ1 ≤ t < θ2} ,

we can apply the generalised key lemma for the filtrations (G2t )t≥0 and (F1
t )t≥0 on {θ1 ≤ t < θ2}
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to get

I(θ1 ≤ t < θ2)E[e−Yt(Y
1
θ2
/Y 1
t )(A

2
T−A

2
θ2

)/Y 2
θ2
−Yt(A1

θ2
−A1

t )/Y
1
t C(Yt(Y

1
θ2
/Y 1

t )(Y 2
T /Y

2
θ2

)) I(t < θ2 ≤ T ) | G2t ]

(4.17)

= I(θ1 ≤ t < θ2)
E[e−Yt(Y

1
θ2
/Y 1
t )(A

2
T−A

2
θ2

)/Y 2
θ2
−Yt(A1

θ2
−A1

t )/Y
1
t C(Yt(Y

1
θ2
/Y 1

t )(Y 2
T /Y

2
θ2

)) I(t < θ2 ≤ T ) | F1
t ]

P (θ1 ≤ t < θ2 | F1
t )

= I(θ1 ≤ t < θ2)C
1
2(T − t, Yt)

for 0 ≤ t ≤ T . Here, using the fact that the F1
t -measurable random variable Yt is independent

of (Y 1
θ2
/Y 1

t )(Y 2
T /Y

2
θ2

) on the event {θ1 ≤ t < θ2 ≤ T} , by virtue of the independence of the
exponential random variables ζ1 ≡ θ1 , ζ2 ≡ θ2 − θ1 , and Y k , k = 1, 2, as well as the Markov
property of the processes (Y k, Ak), k = 1, 2, and the fact that the random variables Y k

s /Y
k
t

have the same laws as Y k
s−t , k = 1, 2, for each 0 ≤ t ≤ s , we have

C1
2(T − t, y) =

E[e−yA
1
ζ1+ζ2−t Ĉ1

2(T − (ζ1 + ζ2), yY
1
ζ1+ζ2−t) I(t < ζ1 + ζ2 ≤ T ) | ζ1]

P (t < ζ1 + ζ2 | ζ1)
(4.18)

=

∫ T

t

∫ ∞
0

∫ ∞
0

e−ya Ĉ1
2(T − v, yz)λe−λ(v−t) g1(v − t, z, a) dvdzda

with

Ĉ1
2(T − v, y) = E[e−yA

2
T−v C(yY 2

T−v)] =

∫ ∞
0

∫ ∞
0

e−yaC(yz) g2(T − v, z, a) dzda (4.19)

for 0 ≤ t < v ≤ T , and the functions gk , k = 1, 2, are given in (2.17) above. Note that
the expression in (4.18) does not depend on ζ1 , because of the exponential distribution of the
random variable ζ2 . Thus, by means of the tower property, we obtain from (4.17) that

E[e−(AT−At) I(θ1 ≤ t < θ2 ≤ T ) | Ft] (4.20)

= P (θ1 ≤ t < θ2 | Ft)C1
2(T − t, Yt) = (Π1

t − Π2
t )C

1
2(T − t, Yt)

holds, for all 0 ≤ t ≤ T , where the function C1
2(T − t, y) is given in (4.18)-(4.19) above.

Finally, taking into account the fact that G2t coincides with F0
t on the event {t < θ1} , we

apply the key lemma for the filtrations (G2t )t≥0 and (F0
t )t≥0 to get

I(t < θ1)E[e−Y
0
t (Y

0
θ1
/Y 0
t )(Y

1
θ2
/Y 1
θ1

)(A2
T−A

2
θ2

)/Y 2
θ2
−Y 0

θ1
(A1
θ2
−A1

θ1
)/Y 1

θ1
−(A0

θ1
−A0

t ) (4.21)

× C(Y 0
t (Y 0

θ1
/Y 0

t )(Y 1
θ2
/Y 1

θ1
)(Y 2

T /Y
2
θ2

)) I(t < θ1 < θ2 ≤ T ) | G2t ]

=
I(t < θ1)

P (t < θ1 | F0
t )
E[e−Y

0
t (Y

0
θ1
/Y 0
t )(Y

1
θ2
/Y 1
θ1

)(A2
T−A

2
θ2

)/Y 2
θ2
−Y 0

θ1
(A1
θ2
−A1

θ1
)/Y 1

θ1
−(A0

θ1
−A0

t )

× C(Y 0
t (Y 0

θ1
/Y 0

t )(Y 1
θ2
/Y 1

θ1
)(Y 2

T /Y
2
θ2

)) I(t < θ1 < θ2 ≤ T ) | F0
t ]

= I(t < θ1)C
2
2(T − t, Yt)

for all 0 ≤ t ≤ T . Here, by virtue of the independence of ζ1 ≡ θ1 , ζ2 ≡ θ2 − θ1 , and Y k ,
k = 0, 1, 2, as well as the Markov property of the processes (Y k, Ak), k = 0, 1, 2, and the fact
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that the random variables Y k
s /Y

k
t have the same laws as Y k

s−t , k = 0, 1, 2, for each 0 ≤ t ≤ s ,
we have

C2
2(T − t, y) = E[e−yA

0
ζ1−t C̃2

2(T − ζ1, yY 0
ζ1−t) I(t < ζ1 ≤ T )]/P (t < ζ1) (4.22)

=

∫ T

t

∫ ∞
0

∫ ∞
0

e−ya C̃2
2(T − u, yz)λe−λ(u−t) g0(u− t, z, a) dudzda

with

C̃2
2(T − u, y) = E[e−yA

1
ζ2 C

2

2(T − u− ζ2, yY 1
ζ2

) I(ζ2 ≤ T − u)] (4.23)

=

∫ T

u

∫ ∞
0

∫ ∞
0

e−yaC
2

2(T − v, yz)λe−λ(v−u) g1(v − u, z, a) dvdzda

and

C
2

2(T − v, y) = E[e−yA
2
T−v C(yY 2

T−v)] =

∫ ∞
0

∫ ∞
0

e−yaC(yz) g2(T − v, z, a) dzda (4.24)

for 0 ≤ t < u < v ≤ T , and the functions gk , k = 0, 1, 2, are given in (2.17) above. By means
of the tower property, we therefore obtain from (4.5) and (4.21) that:

E[e−(AT−At)C(YT ) I(t < θ1 < θ2 ≤ T ) | Ft] (4.25)

= P (t < θ1 | Ft)C2
2(T − t, Yt) = (1− Π1

t )C
2
2(T − t, Yt)

holds, for all 0 ≤ t ≤ T , where the function C2
2(T − t, y) is given in (4.22)-(4.24) above.

Therefore, summarising the facts proved above, we are now ready to formulate the following
assertion.

Proposition 4.1. Suppose that r = 0. The rational price of the European contingent claim
in (2.5) and (2.6) under partial information contained in (Ft)t≥0 is given by the sum of the
terms in (4.4), (4.8), (4.12), (4.16), (4.20) and (4.25).
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