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Abstract 

A growing literature uses repeated cross-section surveys to derive ‘synthetic panel’ data 

estimates of poverty dynamics statistics. It builds on the pioneering study by Dang, Lanjouw, 

Luoto, and McKenzie (‘DLLM’, Journal of Development Economics, 2014) providing bounds 

estimates and the innovative refinement proposed by Dang and Lanjouw (‘DL’, World Bank 

Policy Research Working Paper 6504, 2013) providing point estimates of the statistics of 

interest. We provide new evidence about the accuracy of synthetic panel estimates relative to 

benchmarks based on estimates derived from genuine household panel data, employing high 

quality data from Australia and Britain, while also examining the sensitivity of results to a 

number of analytical choices. For these two high-income countries we show that DL-method 

point estimates are distinctly less accurate than estimates derived in earlier validity studies, all 

of which focus on low- and middle-income countries. We also demonstrate that estimate 

validity depends on choices such as the age of the household head (defining the sample), the 

poverty line level, and the years analyzed. DLLM parametric bounds estimates virtually always 

include the true panel estimates, though the bounds can be wide. 
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1. Introduction 

 

There is a growing literature that employs repeated cross-section surveys to derive ‘synthetic 

panel’ data estimates of poverty dynamics statistics building on the pioneering study by 

Dang, Lanjouw, Luoto, and McKenzie (2014, hereafter ‘DLLM’) providing bounds estimates 

and the innovative refinement proposed by Dang and Lanjouw (2013, hereafter ‘DL’) 

providing point estimates of the statistics of interest. All but one of the applications to date of 

these methods, of which there are many, have been to middle- and low-income countries. 

This paper provides new evidence about the validity of synthetic panel estimates, employing 

high-quality and long-running household panel data from two rich countries, the British 

Household Panel Survey (BHPS) and the Households, Income, and Labour Dynamics in 

Australia survey (HILDA). 

 DLLM state clearly the reasons for employing a synthetic panel approach: 

Genuine panel data are still rare in the developing world, and when they are 

available, the samples are often relatively small, with limited or infrequent 

duration, and in some cases, occur with significant attrition. This has limited 

the feasibility of constructing even relatively simple descriptions of transitions 

in and out of poverty for most countries. Yet policymakers and researchers do 

care about such transitions, and most countries do field repeated cross-

sectional surveys of income or consumption on a reasonably regular basis. 

(DLLM: 123–4.) 

DLLM focus on statistics summarising poverty status in two years, e.g. the joint probability 

of being poor in one year and poor in the second year, and develop methods that provide both 

non-parametric and parametric bounds on this probability and each of the three other joint 

poverty probabilities. They assess the validity of their approach using panel data: synthetic 

estimates, derived by treating the panel data as two independent cross-sections, are compared 

with the ‘true’ estimates derived from the longitudinal data per se (more about this below).  

 DLLM conclude, using data for Indonesia and Vietnam, that ‘the bounds can be 

narrow enough in practice to make the estimates useful’ (DLLM: 124). Cruces et al. (2015) 

assess the DLLM bounds method using data from Chile, Nicaragua, and Peru, incorporating 

extensive examination of the sensitivity of their results to a number of analytical choices 

about definitions, and conclude that ‘the methodology performs reasonably well’ (2015: 163). 

Perez (2016) also assesses the DLLM bounds method but using Mexican data. 
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DL refine the DLLM method and derive point estimates of poverty probabilities 

rather than bounds. Their empirical analysis, based on data for Bosnia-Herzgovina, Laos, 

Peru, Vietnam, and the USA, supports the validity of their refined method: 

[W]e show that our estimates are quite accurate … We find that estimation 

results are good not only for the general population but for smaller population 

groups as well, and are associated with much tighter confidence intervals than 

even direct, panel-data based estimates in those settings where the sample 

sizes for the cross sections are large enough. (DL: 36.) 

The only other validation study of the DL method to date is by Garcés Urzainqui (2017), who 

concludes from his analysis of data for Thailand that ‘the general patterns of mobility 

described by synthetic panel estimates are well in line with the true dynamics’ (2017: 35).  

 DLLM’s and DL’s synthetic panel methods have also been used to derive poverty 

dynamics estimates for a large number of middle- and low-income countries without any 

accompanying validation exercise. Three studies have applied the DLLM bounds method: 

Ferreira et al. (2013) study 18 Latin American countries; Rama et al. (2014), India and 

Bangladesh; and Perez (2016) using a different Mexican data set from that used in his 

validation exercise. There are (at least) seven studies applying the DL point estimates 

method: Dang et al. (2017) to Senegal; Dang and Ianchovichina (2018) to 6 Middle-Eastern 

and North African countries; Rigolini et al. (2016), to 17 Latin American countries; Dang and 

Dabalen (2018), to 20 Sub-Saharan African countries; and Dang and Lanjouw (2018), to 

India. OECD (2015: Appendix 5.A1) apply the DL method to measure transitions into and 

out of low-pay status for individual workers in 10 emerging economies. OECD (2018) apply 

the DL method extensively in their cross-country analysis of movements into and out of the 

poorest fifth and the richest fifth of the income distribution. 

 In sum, there are now many applications of synthetic panel methods to a large number 

of countries in the developing world, and some research suggests that they produce valid 

estimates. However, there is a need for further validation studies of synthetic panel methods 

of estimating poverty dynamics statistics. This paper meets that need and makes a number of 

contributions in addition. We focus our analysis on the DLLM and DL methods because they 

have been used in virtually all applications to date. A potential competitor method is that 

proposed by Bourguignon and Moreno (2015) which uses a different income model from 

DL’s. However, Bourguignon and Moreno’s approach is harder to implement, and has only 

been applied in one other study so far (Garcés Urzainqui 2017). 



3 

Although there is a large number of applications of the DL method, there are few 

validation studies. We assess the DL method in detail, also incorporating sensitivity checks to 

a number of analytical choices about definitions analogous to the way in which DLLM and 

Cruces et al. (2015) assessed the performance of the DLLM method. We also provide DLLM 

parametric bounds estimates.  

We add substantially to analysis of the DL and DLLM methods in rich country 

contexts with our study of Australia and Britain; DL’s US case study is the only previous rich 

country application of the synthetic panel approach. Our paper is the first to consider how 

variations in the age range of the household head used to define analysis samples affects 

results for a given country. (Age ranges vary across earlier studies but not within them.) We 

also consider the impact of using different definitions of the cohorts used to derive the 

parameter  which is a fundamental ingredient of the DL method (explained below). Only 

Garcés Urzainqui (2017) has done this before. 

Our research is also distinctive because we examine the sensitivity of the DL method 

to the choice of the poverty line for the first time. DLLM and Cruces et al. 2015 examined the 

sensitivity of the DLLM bounds approach (not the DL one). This turns out to be important. In 

addition, we derive poverty dynamics estimates for subgroups of individuals defined by age 

(0–17, 18–59, and 60+ years).  

 Further distinctive features of our work are as follows. For all sets of analytical 

choices about definitions, we derive estimates of poverty exit and entry rates, i.e. estimates of 

two conditional probabilities, in addition to estimates of the four joint probabilities that have 

been the focus of previous work. In this respect, we are taking up the challenge of Fields and 

Viollaz (2013: 20) who argue that it is these conditional probabilities that are more relevant 

to the essence of ‘poverty dynamics’ and who contend that the DLLM method estimates them 

less accurately. DL provide conditional probability estimates, noting that they are ‘slightly 

less accurate’ than the joint probability estimates (p. 33). We provide new and more extensive 

evidence about whether estimates of conditional poverty probabilities are more or less 

accurately estimated than joint probabilities.  

 In addition, because the BHPS and HILDA are much longer-running household 

panels than those for any developing country – we use data collected annually over 18 years 

for the BHPS, and over 15 years for HILDA – we can provide a detailed assessment of the 

extent to which the accuracy of synthetic panel estimates of poverty dynamics statistics vary 

according to the year or period studied. This turns out to be important. 
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 Finally, we consider the benchmarks used to assess the accuracy of the synthetic panel 

estimates. As we discuss below, and has not been pointed out before, the ‘true’ benchmarks 

employed by DL differ from those that are typically used in ‘standard’ panel data approaches 

to poverty dynamics. We show how the benchmark estimates shift if one changes the 

following rule and consider the implications for assessments of accuracy of synthetic panel 

estimates. 

 Although the application of DLLM and DL methods has focused on developing 

countries, there is value in assessing their validity in rich country contexts even though panel 

data are more common. For example, there are long-standing concerns about attrition in the 

longitudinal data components of the EU’s Statistics on Income and Living Conditions (EU-

SILC), i.e. the sources used to calculate the EU’s measure of persistent poverty. Among the 

countries using household panel surveys to collect data about income and poverty annually 

over a four-year period, there is substantial loss to follow-up. For example, Jenkins and Van 

Kerm (2017: Figure 22.1) show that around one half of the countries using surveys have four-

year (2008–2011) retention rates of less than 70% with the smallest rate just over 40% (UK). 

By comparison, the four-year retention rates following the first waves of high-quality panels 

such as the BHPS and HILDA are nearly 80% (Watson and Wooden 2011, Figure 3). 

 The rest of our paper unfolds as follows. In Section 2, we review how the DLLM and 

DL methods work, and point out the key analytical choices that are required to implement 

them. In Section 3, we describe our HILDA and BHPS data and explain our various 

definitional choices. We report our empirical results in Sections 4 and 5. Section 4 examines 

the accuracy of estimation of the cross-year correlation parameter (, i.e. ‘DL rho’) that 

underpins the DL method, and which is derived using pseudo-panel methods. We show that, 

depending on the definition of the cohorts and the age range of the household head used to 

define the analysis sample, DL-method estimates of  can vary substantially depending on 

the time period considered and also be very different from the ‘true’ panel data benchmark 

estimates.  

In Section 5, we report our assessments of the validity of DL method estimates of 

joint and conditional poverty statistics, focusing on a ‘leading case’ set of choices relating to 

the definition of cohorts, sample selection (the age range of household heads), and the 

poverty line. In Section 6, we document how assessments change as we vary, in turn, choices 

about the ‘true’ panel benchmark (the following rule issue), the age range of household 

heads, and the poverty line. Finally, we look at estimates of poverty dynamics statistics for 
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three age groups of individuals (aged 0–17, 18–59, and 60+ years). Our conclusions are in 

Section 7.  

Overall, we show for Australia and Britain that DL-method point estimates of poverty 

dynamics statistics are distinctly less accurate than estimates derived in earlier validity 

studies, all of which focus on low- and middle-income countries. We also demonstrate that 

estimate validity depends on choices such as the age of the household head (defining the 

sample), the poverty line level, and the years analyzed. DLLM parametric bounds estimates 

virtually always include the true panel estimates, though the bounds can be wide. 

For brevity, we report only a selection of results in the main text. Appendices A 

(HILDA) and B (BHPS) in the Supplementary Material report the estimates of the DL(LM) 

income model regressions, the means of the income predictors, as well as visual checks of the 

bivariate normality assumptions, year by year. We also provide a full set of estimates of all 

poverty dynamics statistics for each of the 28 different combinations of definitions we use. 

Estimates of the cohort regressions used to derive DL rho (see Section 2) are available from 

the authors on request.  

 

 

2. How do the DLLM and DL methods work? 

 

With cross-sectional survey data for a pair of years (Year 1, Year 2), one has information 

about the marginal distributions of income in each year. (The outcome variable might be 

consumption rather than income; we refer to the latter.) Clearly, there is no information about 

the joint distribution of income in the two years, nor thence information about poverty 

dynamics. The DLLM and DL methods work by using a model and associated assumptions to 

fill in the missing longitudinal information. In this section, we review the key elements of the 

two methods, drawing heavily on the original expositions. 

 The first step, common to DLLM and DL methods, is an income model for each of 

Year 1 and Year 2. Suppose that income yit for household head i in year t is described by 

log(yi1)  =  1xi1 + i1 (1) 

log(yj2)  =  2xj2 + j2 (2) 

where xi1 and xj2 are vectors of time-invariant predictors in Years 1 and 2.  

The Year 1 income for each household head j observed in Year 2 is unobserved but it 

can be predicted using model estimates and two auxiliary assumptions. Ordinary least squares 
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regression applied to each of (1) and (2) yields parameter estimates �̂�1, �̂�2 (the regression 

coefficients), �̂�1, �̂�2 (the variances of the residuals in each year), and also of the residuals 𝜖�̂�1, 

𝜖�̂�2 for each i, j. DLLM’s Assumption 1 is that the population sampled by the two cross-

section surveys is the same in Year 1 and Year 2 and so, for instance, the distributions of the 

time-invariant regressors are the same. DLLM’s Assumption 2 states that the residual errors 

i1 and i2 are ‘positive quadrant dependent’, a property that includes being positively 

correlated.  

DLLM show that with these assumptions one can derive nonparametric bounds on the 

four joint poverty probabilities. The Upper Bound scenario (with maximum income mobility) 

arises when the error terms in the Year 1 and 2 income equations are independent. The Year 1 

income distribution can then be predicted as follows. For every observation j in the Year 2 

sample, take a random draw with replacement from the empirical distribution of residuals for 

Year 1 (with mean 0, s.d. �̂�1) and predict the outcome in Year 1 using the expression 

log(𝑦𝑗1
𝑈 ) ̂ =  �̂�1′𝑥𝑗2 + 𝜖�̌�1, where 𝜖�̌�1 is the residual imputed to each j. We now have synthetic 

panel data from which poverty dynamics statistics can be calculated. Although the 

observation unit is the household head, application of appropriate survey weights (that also 

account for the number of individuals in each head’s household) provides estimates referring 

to the population. To counter the variability introduced by the stochastic nature of the 

imputations, one repeats the random-draw-and-calculation step R times and averages the 

resulting estimates. We find that setting R = 50 is sufficient. 

DLLM’s Lower Bound scenario arises when the residual errors are perfectly 

correlated across Year 1 and Year 2. In this case, the Year 1 income prediction for each j 

from the Year 2 sample is log(𝑦𝑗1
𝐿 ) ̂ =  �̂�1′𝑥𝑗2 + 𝛾𝜖�̂�2, where scalar  is chosen to ensure the 

standard deviation of the imputed Year 1 residuals distribution equals �̂�1. Again, we now 

have synthetic panel data and can calculate the poverty dynamics statistics of interest, again 

using weights to derive population-level estimates.  

DLLM also proposed a parametric bounds approach in order to narrow the bounds, 

arguing that non-parametric bounds for the poverty dynamics statistics may be wide and 

hence not particularly useful in practice. DLLM’s key additional assumption is that the 

distribution of errors in (1) and (2) is bivariate normally distributed. This means that all the 

poverty dynamics statistics can be calculated if one has an estimate of the correlation of the 

errors, . The bivariate distribution of income is fully characterised by , the estimates of the 

standard deviations of the cross-section marginal distributions (1, 2), and the other income 
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model parameters. For example, the probability of being poor in Year 1 and also poor in Year 

2 is 

Prob(yj1 < z1 and yj2 < z2 ) = Φ (
log(𝑧1)−𝛽1

′𝑥𝑗1

𝜎1
,

log(𝑧2)−𝛽2
′𝑥𝑗2

𝜎2
, 𝜌) 

(3) 

where (.) is the bivariate normal cumulative distribution function, and z1 and z2 are the 

poverty lines for Year 1 and Year 2. There are analogous expressions for the other three joint 

poverty dynamics probabilities (DLLM, section 4). 

DLLM suggest choosing bounds for  by drawing on information from longitudinal 

surveys for the same country or other similar countries. In their applications, they use  

values of (0.2, 0.8) and (0.3, 0.7).  

DL build on DLLM’s parametric bounds approach, innovatively showing that one can 

derive a point estimate for  (and thence for each of the poverty statistics of interest) from the 

data already to hand rather than by relying on auxiliary estimates from other surveys to 

provide bounds. (There are also a number of other extensions, including applications to 

income dynamics over more than two years, and to mobility between more than two income 

classes, but we do not examine these aspects here.) DL’s key insight is that pseudo-panel 

methods utilising panels based on cell mean data about cohorts can be deployed. Cohorts are 

defined by grouping together individuals sharing the same (or similar) age and time-invariant 

characteristics (e.g. sex, ethnic background). Important references that DLLM draw on 

include Deaton (1985), Moffitt (1993), and Verbeek (2008). 

 DL show first, in their Proposition 1, that an approximate estimate of the correlation 

between log(y1) and log(y2), 𝜌𝑦1𝑦2
, can be derived from a cohort-level regression of Year 1 on 

Year 2 cohort mean incomes. (Our derivation follows DL Appendix 1 eq. 1.6.) This is an 

Instrumental Variables estimator and hence (as DL point out) reliant on a number of 

assumptions, some of which untestable and have to be maintained. Intuitively, one needs 

substantial income variation across cohorts so that cohort means are sufficiently predictive 

and also sufficiently large cohort sizes to ensure sufficient precision. 

Second, DL show in their Proposition 2 that the all-important cross-year correlation of 

residuals, , can be derived from 𝜌𝑦1𝑦2
 and other information already to hand from the 

income models:  

𝜌 =
𝜌𝑦1𝑦2√𝑣𝑎𝑟(log(𝑦𝑗1))𝑣𝑎𝑟(log(𝑦𝑗2))  −  𝛽1

′ 𝑣𝑎𝑟(𝑥𝑗)𝛽2

𝜎1𝜎2
. 

(4) 

This is the ‘DL rho’ estimate that we report below. DL also show that another estimate of  
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can be derived (Corollary 2.1), though they state (p. 13) that it typically provides very similar 

estimates. We find this too, and so do not report this other estimate.  

 Given the estimate of , estimates of poverty dynamics statistics can be derived using 

the same approach as set out for the DLLM parametric bounds approach: cf. (3) above, and 

analogous expressions for the other joint probabilities as well as poverty entry and exit rates. 

 DL’s theoretical results provide little direct guidance to analysts about how to define 

the cohorts in practice. Their own empirical analysis uses cohorts defined in terms of age 

only (DL: 30), with samples restricted to households for which the household head in Year 1 

is aged 25–55 years, and they do not consider the practical implications of alternative 

definitions. In contrast, Garcés Urzainqui (2017, especially section 5.3) discusses theoretical 

and practical issues concerning cohort definitions extensively.  

We conclude from this research that there is no single definition of cohorts that is 

clearly the ‘best’ for empirical work and, correspondingly, there is substantial scope for 

analysts to choose among a relatively large number of potential definitions. Put differently, 

the choice of cohort definition, and the closely related sample selection decision concerning 

the age range of the household head, is a potential source of sensitivity for synthetic panel 

estimates of poverty dynamics statistics that needs to be investigated because it is 

fundamental to the DL method. We provide this analysis. Further information about our 

analytical choices is provided in the next section. 

 We assess accuracy (‘validity’) as previous researchers do by examining how close 

each of the synthetic panel estimates is to the corresponding estimate derived from genuine 

panel data. The latter is treated as the ‘true’ estimate, with the quotation marks used to 

indicate that the benchmark is itself an estimate. We follow DLLM and DL by counting a 

synthetic panel estimate as sufficiently accurate if it lies with a 95% confidence interval of 

the ‘true’ estimate. DL also use a tighter criterion (within one standard deviation of the ‘true’ 

estimate) and also some coverage criteria (DL: 31), but we find these unnecessary in our 

applications because validity is not achieved for many estimates using the looser criterion 

(see later). Other approaches to assessing accuracy are possible, e.g. one might compare the 

‘true’ point estimate to the 95% confidence interval of the synthetic panel estimate, or look at 

confidence interval overlap for both estimates. However, because our focus is the validity of 

the DLLM and DL methods as usually implemented, we use their main approach to assessing 

validity. 
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3. HILDA and BHPS: data and definitions 

 

We use household panel data from waves 1–15 of HILDA (covering 2001–2015) and from 

waves 1–18 of the BHPS (covering from 1991 to 2008, its final year). The surveys share a 

common design: the original respondents are a sample of the private household population of 

the country concerned and are re-interviewed annually. Both HILDA and the BHPS follow 

individuals from originally-sampled and split-off households, like the US Panel Study of 

Income Dynamics and the German Socio-Economic Panel. As in the SOEP (but not the 

PSID), HILDA and the BHPS interview all adults within a household. HILDA and the BHPS 

are widely renowned as very high-quality datasets. For example, attrition rates are low, 

around 5 percent or less each year after wave 1 (Watson and Wooden 2015). Both surveys 

provide weights to derive population-level estimates that account for non-response (including 

attrition). For an overview of HILDA and the BHPS, see Frick et al. (2007).  

 The measure of living standards is the same in HILDA and the BHPS, i.e. equivalised 

net household income. See Wilkins (2017: Chapter 3) for HILDA and Jenkins (2011, chapter 

4) for the BHPS. Household net income is (a) total money income earned in the labour 

market from employment or self-employment, income from the capital market (e.g. stocks, 

shares, interest-bearing accounts, and other financial assets), cash transfers from the 

government, plus private transfers, from which is deducted (b) national and local income 

taxes and (in Britain) social insurance payments, and a small number of other deductions. Net 

income is adjusted to account for differences in household size and composition using the 

‘Modified OECD’ equivalence scale. The income definition is consistent with the 

recommendations of international bodies such as the Canberra Group (2011), and is the 

definition used by the OECD and Eurostat to produce their inequality and poverty statistics. 

To include a very small number of zero values for income (between 7 and 26 per year in 

HILDA; between 1 and 2 in the BHPS), we follow DL (p. 6) and apply a modified Box-Cox 

transformation to observed incomes.  

We set the poverty line at 60% of contemporary national median income in most of our 

analysis, but also consider 50% of contemporary national median income as an alternative. 

The 60% cut-off is used by UK official statistics and Eurostat to derive their ‘headline’ 

poverty statistics. Australia and the OECD have commonly used the 50% threshold. DL(LM) 

mostly use official poverty lines in their studies and so we are following them in this respect. 

An important difference is that our poverty lines are relative lines whereas the official 
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poverty lines for the countries that DL(LM) consider are absolute poverty lines typically 

derived with reference to calculations of minimum cost food and non-food budgets. 

We undertake analysis using samples selected according to two definitions of the age of 

the household head: 25–55 years and 25–75 years. (These refer to the age in Year 1; the Year 

2 age range is adjusted upwards accordingly.) This range encompasses those used in previous 

research and also allows us to check how the validity of synthetic panel estimates varies with 

the choice. The HILDA sample sizes are between 5,190 and 7,198 household heads per year 

for samples with heads aged 25–75 years, and between about 3,618 and 4,880 for the samples 

with heads aged 25–55. For the BHPS, the corresponding sample sizes are between 2,464 and 

3,190 and 1,526 and 2,176, respectively. 

DLLM state that they use the 25–55 age range because ‘analysis of poverty transitions 

among households headed by those younger than 25 or older than 55 or 60 is more difficult 

since at those ages households are often beginning to form, or starting to dissolve’ (DLLM: 

114). DL state that their choice is ‘consistent with the literature on pseudo-panel data … 

While this age range can be extended to include older people, it may be ill-advised to include 

those who are younger, at least since most household heads tend to be older than 25 in all the 

countries we look at’ (DL: 30). Cruces et al. (2015) used the range 25–65 years, ‘in order to 

avoid lifecycle effects which can invalidate the time invariance assumption’ (2015: 166). 

Garcés Urzainqui selects heads aged 25–70, remarking that ‘limiting the age of the household 

head is a standard procedure in this literature to restrict attention to stable households, 

avoiding the age segments most associated with household formation and household 

dissolution. … I am more relaxed … [Thai] households with older heads tend to be poorer so 

that strict age limits may lead to a distorted view on poverty dynamics’ (2017: 21–22).  

There are two issues here. One is the need to ensure the time-invariance assumption is 

satisfied. The second concerns the treatment of household formation and dissolution, but this 

is more an issue concerning the definition of the benchmark ‘true’ panel estimates of poverty 

probabilities and the panel survey’s following rule (the issue we flagged in the Introduction). 

Relevant to both issues is the question of the age ranges in which household formation and 

dissolution is most prevalent. By comparison with developing countries, in rich countries, 

households with heads aged 55–75 may be more stable than those with a head aged 25–55 

because divorce and partnering is more common among the latter group, and longevity is 

greater. In any case, there is a separate argument in favour of using as wide an age range as 

possible because this provides estimates with greater coverage of the population and includes 

groups of policy interest such as elderly people. 
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The predictors that we include in the Year 1 and 2 income models are much the same 

as those employed by DL (see their Appendix 2). More specifically, for HILDA, the predictors 

are the household head’s sex, birth cohort (by half decade), education level (four categories), 

and country of birth (whether of Australian origin, or a migrant from English speaking country 

or non-English speaking country). For the BHPS, the predictors are the household head’s sex, 

birth cohort (by half decade), education level (five categories), and whether of non-white ethnic 

origin. Both models also include interactions between education and sex and education and 

birth cohort. All predictors are time-invariant, as assumed by the DL(LM) method. In 

preliminary work, we also considered simpler income model specifications, without the 

educational level variables and associated interactions. This choice led to reduced goodness of 

fit (i.e., smaller adjusted-R2) but made little difference to our estimates of poverty dynamics 

statistics and so we do not report these results.  

 We use a one-year gap between Year 1 and Year 2. ‘One year’ corresponds to within a 

month of the anniversary of the previous year’s interview for the vast majority of households 

in HILDA (Summerfield et al. 2016, Tables 8.5, 8.6) and the BHPS (calculations by the 

authors). Thus HILDA provides us with 14 year-pairs of data (2001/2002 through to 

2014/2015), and the BHPS 17 year-pairs of data (1991/1992 through to 2007/2008).  

Use of the one-year gap enables us to examine the sensitivity of validity checks to the 

period considered much more extensively than in other studies. Using a one-year gap is also 

favourable to the DL(LM) method because it is more likely that the population sampled by 

Year 1 and Year 2 cross-sections is the same (cf. Assumption 2). We found no evidence of a 

substantial reduction in the accuracy of DL(LM) estimates of poverty dynamics when we 

considered five-year gaps in preliminary analysis. 

 Estimates of  are contingent on the definition of the cohorts used, and so to analyse 

sensitivity, we consider multiple definitions. For HILDA, the first two of the seven cohort 

definitions are based on year of birth, YOB(s) where s, the number of birth years covered, is 

1 and 5. (DL use the YOB(1) definition.) The third and fourth definitions are based on sex 

interacted with each of YOB(5) and YOB(10). Definitions 5 to 7 are based on YOB(5), 

YOB(3) and YOB(10), each interacted with country of birth (Australia, English-speaking, or 

non-English-speaking country). For the BHPS, the six cohort definitions are specified 

similarly, with cross-country differences reflecting variable availability and cell size 

considerations. Four definitions are based on YOB(s) where s is 1, 3, 5, and 10. The other 

two definitions use sex interacted with each of YOB(5) and YOB(10).  
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Numbers of cohorts and cohort size for each definition and country are shown in 

Table 1 (HILDA) and Table 2 (BHPS) below. There are two panels in each table 

corresponding to whether the sample selected refers to heads aged 25–55 or 25–75. The 

greater the number of cohorts, the smaller the average cell size. For example, for HILDA, 

definition YOB(1) has 51 cohorts with average size 123; for definition SEX*YOB(10), there 

are 10 cohorts with average size 619.  

For the validation analysis per se, our data sets are constructed in the same way as 

DLLM’s (see their pp. 116–117). Each two-year longitudinal sample is split randomly into 

two samples A and B. The ‘true’ panel estimates are derived using sample A’s data for Year 

1 and Year 2. The two cross-sections are the Year 1 data for sample A and the Year 2 data for 

sample B. This ensures that no individuals appear in both cross-sections; if they did, it could 

contaminate the exercise by introducing spurious cross-unit correlation. Because the sample 

splitting is done randomly, we report results for each country-year-pair based on the averages 

of 50 splits.  

 

 

4. Estimates of DL rho using pseudo-panel methods 

 

We report estimates of  for each cohort definition and sample selection criterion, as well as 

information about numbers of cohorts and cohort size, in Table 1 (HILDA) and Table 2 

(BHPS). We do not show the results for every Year 1–Year 2 pair here; instead, and in order 

to highlight differences arising from cohort definitions and sample selection, Tables 1 and 2 

show averages across year-pairs (14 for HILDA, 17 for the BHPS). Variability in estimates 

by year-pair is addressed shortly. 

<Tables 1 and 2 near here> 

 For assessing the accuracy of the DL method, the most important rows of Tables 1 

and 2 are the ones labelled ‘panel rho’ and ‘DL rho’. The former is the ‘true’ correlation of 

the residuals from the Year 1 and 2 income regressions, derived from the longitudinal sample 

defined earlier. The (averaged) ‘true’ rho is almost 0.75 for Australia and slightly smaller for 

Britain (nearer 0.70), but hardly varies with the household head’s age range in both countries.  

DL rho is the (averaged) estimate of  derived from the income-cohort correlations 

and the transformation shown in equation (4). For both Australia and Britain, there is 

substantial variation according to cohort definition, and many estimates differ substantially 
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from the ‘true’ panel rho. For the YOB(1) cohort definition and sample with head aged 25–

55, the definitions closest to DL’s, the HILDA panel rho is more than five times larger than 

the DL rho (Table 1) and the BHPS one is more than three times larger (Table 2). Yet, at the 

same time, the HILDA panel rho differs by no more than 15 percent of DL rho in six of the 

14 cohort-age-range combinations. For the BHPS, the corresponding number is six out of 12 

combinations. Estimates tend to be better when the head’s age is 25–75, a result that also 

applies to both countries. Indeed, for this head age range and for cohort definition 

COB*YOB(5) for Australia and Sex*YOB(5) for Britain, the averaged DL rho is virtually the 

same as the ‘true’ benchmark. 

Our finding that the quality of DL rho estimates is sensitive to the choice of cohort 

definition is worrying because researchers applying the DL method (and without longitudinal 

data) might choose the ‘wrong’ definitions and sample selection criterion, if only because of 

data constraints. This could lead to inaccurate estimates of  and thence of the poverty 

dynamics statistics of interest. 

 The averaged estimates in Table 1 do not show how estimates vary across year-pairs. 

For brevity, we document temporal variation for only four combinations of cohort definition 

and household head’s age range. (These encapsulate the range of results derived from all the 

combinations.) Figure 1, panel (a) for HILDA and panel (b) for the BHPS, shows the year-

by-year estimates of the ‘true’ panel rho (with pointwise 95% confidence interval) as well as 

the estimates of DL rho. Also shown are estimates of DL’s cohort-mean correlation 

coefficient, 𝜌𝑦1𝑦2
, labelled ‘simple cohort correlation’ in the Figures. These estimates 

represent the first step in deriving DL rho estimates before information from the income 

model is incorporated in a second step (see eq. 4). DL rho estimates track the cohort 

correlations closely but tend to be lower. As the cohort correlations are more often an 

overestimate than an underestimate of the ‘true’ panel rho, DL rho is a closer approximation 

to the ‘truth’ than the cohort correlation on average, though that is not the case for all year-

pairs. 

<Figure 1 near here> 

 For Australia, the ‘true’ panel rho increases slightly over the period. However, for 

only one combination (head aged 25–75, cohort definition COB*YOB(5)) of the three is the 

‘true’ panel rho tracked well by DL rho and, even in this case, there are some noticeable 

differences between them in the very earliest and very latest year-pairs. For the other three 

combinations, differences are markedly larger, and it is clear the choice of household head’s 
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age range is the principal contributor to the differences between the estimates. In the two 

charts on the right-hand side of Figure 1(a), DL rho differs substantially from the ‘true’ panel 

estimate, especially in the second half of the period, and fluctuates substantially. In addition 

the DL rho estimate generally declines over time, contrary to the slight rise in the ‘true’ panel 

rho.  

 For Britain (Figure 1(b)), many of the same patterns are apparent. The main 

differences compared to Australia are, first, that there is slightly more variation over time in 

the estimates of the ‘true’ panel rho. Second, the differences between estimates of DL rho and 

the ‘true’ panel rho are not as large as those for Australia, even for the two combinations with 

household head aged 25–55. This suggests that BHPS synthetic panel estimates of poverty 

dynamics statistics are likely to be more accurate than their HILDA counterparts, and less 

sensitive to the choice of definitions and sample selection.  

Why there are large changes in DL rho estimates over time is unclear. There were no 

changes in HILDA or BHPS design over the period that explain this; nor are they correlated 

with changes in, for example, changes in average cohort size or some other feature of the 

cohort regressions. 

 A more general lesson from Figure 1 is that the accuracy of DL rho estimates depends 

on the precise years considered. (This is also clear from DL’s results – observe the ‘relative 

difference (%)’ summaries reported in their Table 2 for countries with more than one year-

pair of estimates – but our more complete coverage of long time periods for each country 

makes the finding more manifest.) For each cohort definition and head’s age range in our 

Table 1, there is at least one year-pair for which the DL rho estimate is very close to its ‘true’ 

panel counterpart. But it is rare for researchers to have access to panel data for as many year-

pairs as we have, particularly in developing countries. Typically the data cover only one or 

two subperiods.  

Our analysis shows that the quality of DL rho estimates depends on the data that 

happen to be available for a particular time period. Put differently, if researchers do have 

access to data for multiple year-pairs, then there may be a pay-off to averaging the DL rho 

estimates over time in order to remove what might be spurious volatility.  

In the next section, we put these issues on one side, and use the estimated values of 

DL rho, along with the other parameters of the income models, to derive estimates of poverty 

dynamics statistics.  
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5. Synthetic panel estimates of poverty dynamics statistics: leading case 

 

In this section we provide synthetic panel estimates of the four joint poverty probabilities and 

two conditional poverty probabilities, for Australia and Britain. We focus on a ‘leading case’ 

set of definitions, and in Section 6 consider the impact on the estimates and their validity of 

changes to these definitions. Our leading case is based on the combinations of sample 

selection criterion and cohort definition that provide estimates of DL rho that are the closest 

to the ‘true’ panel value (see Figure 1). This maximizes the chances that the DL methods 

estimates are accurate, other things being equal. Thus, the leading case is based on the 

following criteria: household head is aged 25–75; the cohort definition is COB*YOB(5) for 

Australia and Sex*YOB(5) for Britain; the poverty line is 60% of contemporary median 

income; and the estimates refer to ‘all individuals’.  

 Our leading case estimates of the four joint poverty probabilities for each year-pair 

are shown in Figure 2 (HILDA) and Figure 3 (BHPS), together with related benchmarks to 

compare them with. Figure 4 shows the estimates of poverty exit and entry probabilities for 

both countries. Each figure has the same format. We show DLLM parametric bounds 

estimates, assuming 0.5 <  < 0.9. Although these  bounds differ from those used by DLLM 

for developing countries, they are consistent with the ‘true’ panel estimates that DL report for 

the USA (Table 2) and with Tables 1 and 2, and Figure 1 above. The black dots labelled 

‘parametric estimate’ are the DL-method probability estimates, derived using the approach 

discussed earlier. We also show what the estimates would be were the derivation undertaken 

using the ‘true’ panel rho rather than DL rho. The benchmarks for assessing the accuracy of 

the DL-method estimates are shown by the ‘true’ estimates and their pointwise 95% 

confidence intervals (dark grey band).  

 Consider first the HILDA estimates of the joint exit probability shown in the bottom-

left panel of Figure 2. The parametric bounds estimates fluctuate slightly from one year-pair 

to the next, but are consistently between around 4% and 9%, a range of some 5 percentage 

points, and hence relatively wide. The DL parametric estimates also fluctuate somewhat, but 

tend to lie in the middle of bounds estimates (apart from at the end of the period): the values 

are around 7% to 8%. If the ‘true’ panel rho had been known, the estimates of the joint 

probability would have been quite similar – except at the very beginning of the period and at 

the end of the period, which is when the DL rho and ‘true’ panel rho estimates differ the most 

(see Figure 1(a)). The similarities between the series are a reminder that the accuracy of the 
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DL-method probability estimates is also contingent on the income model predictions and 

related assumptions, a point to which we return in Section 7.  

<Figure 2 near here>  

 We assess the accuracy of the DL-method estimates of the joint exit probability by 

considering whether they lie within the 95% confidence interval of the ‘true’ estimates. It is 

clear from Figure 2 that, for the vast majority of year-pairs (11 out of 14), the DL estimate is 

outside the 95% confidence interval of the ‘true’ estimate. On average, it is around 2 

percentage points larger than the benchmark ‘true’ joint probability (more at the end of the 

period).  

 For the other three joint probabilities, the headline message regarding accuracy is 

mixed. For the joint persistence probability (top left hand figure in Figure 2), the DL-method 

estimates are accurate in the sense that they lie with the 95% confidence interval of the 

corresponding ‘true’ estimate in 11 out of the 14 comparisons. The DL estimates of the joint 

persistence probability tend to be slightly smaller than their ‘true’ counterparts, but both show 

a small decline from around 11% at the beginning of the 2000s to around 10% just over a 

decade later.  

However, although the DL method estimates the joint persistence probability 

relatively accurately, it does not do so for the other two joint probabilities. The ‘true’ joint 

probability of being non-poor in two consecutive years increases by around 4 percentage 

points over the period, from around 76% to around 80%. By contrast, the DL estimates show 

no rising trend (around fluctuating values). The DL estimates are within the 95% confidence 

interval of the ‘true’ estimates for only four of the 14 year-pairs (all of which are at the start 

of the period). The joint entry probability is also inaccurately estimated, with only two of the 

14 DL-method estimates within the benchmark confidence band. The ‘true’ estimate 

fluctuates around 5% to 6% and the DL-method estimate is somewhat larger. For 2006-2007 

and the three years at the end of the period, the DL-method estimate is up to 2 percentage 

points greater than the upper bound of the confidence interval, which is a large gap when 

assessed relative to the ‘true’ point estimate. 

 The findings for the BHPS contain both differences and similarities to the HILDA 

ones: see Figure 3. On the one hand, the headline results regarding accuracy of the DL 

method are more favourable. For the joint persistence probability (top left hand figure), all 17 

of the DL-method estimates lie within the benchmark confidence interval, and well within it 

in the majority of year-pairs. For each of the other three joint probabilities, around half of the 

DL-method estimates lie within the 95% band, and almost all of these are in the first half of 
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the period. As with HILDA, inaccuracy is greatest towards the end of the period and at the 

very beginning and, again, these are precisely the year-pairs when there are the greatest 

differences between DL rho and ‘true’ rho. Interestingly, the point estimates of the joint 

probabilities, and trends over time (or lack of trend), are similar for both Australia and 

Britain. The BHPS estimates tend to fluctuate a bit more over time, and the benchmark 

confidence interval is a little wider, with both features reflecting the smaller sample sizes in 

the British dataset.  

<Figure 3 near here>  

 Our findings for the conditional probabilities are shown in Figure 4, with panel (a) 

displaying HILDA estimates and panel (b) the BHPS estimates. Contrary to Fields and 

Viollaz (2013) as cited in the Introduction, but consistent with DL, we do not find that 

poverty exit and entry rate estimates are markedly less accurate than joint probability 

estimates. Our results for conditional and joint probabilities have more similarities than 

differences. Benchmark confidence bands tend to be larger, especially for exit rates, 

reflecting the smaller sample numbers ‘at risk’ that underlie the calculations. But we also see 

that BHPS exit and entry rates are more accurately estimated than HILDA exit and entry 

rates. As well, for both countries, inaccuracies tend to be more prevalent towards the end of 

the time periods covered, and the DL-method estimates of exit and entry rates tend to be 

larger than the corresponding ‘true’ estimates. 

<Figure 4 near here> 

 

 

6. Synthetic panel estimates of poverty dynamics statistics: variants 

 

Our results so far show that the accuracy of the DL method depends on the time period 

considered and the country context. But these findings are contingent on a number of 

definitional assumptions. In this section, we consider the robustness of our conclusions to 

variations in definitions around the leading case considered so far. For brevity, we show only 

a selection of our results here; the complete set is provided in the Supplementary Material. 

 

6.1 Changing the ‘true’ panel benchmark  

 

The DL(LM) approach is implemented at the household level, as explained in the 

Introduction. The time-invariant household characteristics used in the DL(LM) income 
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models are the characteristics of the household head, and population-level estimates (i.e. for 

individuals, not households) are derived using sample weights. This means that DL(LM)’s 

income projections are based on the implicit assumption that household composition is 

unchanged between Year 1 and Year 2. The characteristics of a head of household are used to 

predict the income of all the members of his or her household in both years. DL(LM) 

applications (and our Section 5) employ benchmarks in which individuals’ predicted Year 1 

outcomes are compared with the Year 1 income of their Year 2 household head, ignoring any 

changes in household head.  

 These benchmarks differ from what standard analysis of poverty dynamics would use 

when genuine longitudinal data are available. The standard approach recognises that the 

concept of a ‘longitudinal household’ cannot be defined satisfactorily because households 

dissolve and form over time. Only individuals can be consistently linked over time. Thus 

poverty dynamics according to the standard panel approach are assessed by tracking each 

individual in the base year sample over time and comparing their Year 1 and Year 2 

household incomes. Only if there is no household change over time does the approach of 

tracking household heads over time lead to the same poverty dynamics estimates. But 

household change is prevalent and poverty entry and exit risks are correlated with household 

change. For a review of links between panel following rules, household change and income 

mobility in rich countries, see Jenkins (2011). For similar arguments in a developing country 

context, see Rosenzweig (2003). 

In sum, taking a standard panel approach to calculating poverty dynamics statistics 

can potentially lead to a difference between DL’s ‘true’ panel estimates and ‘standard’ panel 

estimates of poverty statistics which are based on data derived by following individuals, not 

household heads. But does the change of benchmark affect assessments of the validity of the 

synthetic panel approach? 

 We answer this question focusing on estimates of poverty exit and entry rates. Figure 

5 displays estimates of these for HILDA (panel a) and BHPS (panel b). The figures have 

exactly the format as Figure 4, except that we have removed the parametric bounds for 

clarity, and added the alternative ‘standard’ panel estimates and their pointwise 95% 

confidence bands. These are shown in light grey and may be contrasted with the DL ‘true’ 

panel benchmark shown in dark grey. We also include the estimates derived applying the 

standard panel approach to data on all individuals in all households regardless of head’s age 

that thus cover the whole population (long-dashed line labelled ‘all hh’). 

<Figure 5 near here> 



19 

Figure 5 shows that the standard panel approach leads to estimates of poverty exit 

rates that are slightly larger in magnitude and more noticeably larger estimates of poverty 

entry rates. Using the standard panel benchmarks leads to a more favourable assessment of 

the accuracy of DL-method synthetic panel estimates of poverty entry rates. For HILDA, the 

number of year-pair estimates lying outside the reference confidence band falls from 12 out 

of 14 (‘true’ panel benchmarks) to 5 (‘standard’ panel benchmarks). For the BHPS estimates 

of poverty entry rates, the corresponding fall is from 9 out of 17 to 4.  

 Whether changing the benchmark definition would make a difference in other 

contexts is difficult to assess. Taking account of household change is likely to raise poverty 

entry rate estimates rather than exit rate estimates in most countries compared to the ‘true’ 

panel approach. This is consistent with the well-known finding for rich countries that 

household change is particularly associated with poverty entries rather than poverty exits 

(Bane and Ellwood 1986, Jenkins 2011). However, synthetic panel estimates will only be 

assessed as more accurate according to the standard panel benchmarks if, as well, the 

synthetic estimates are larger than the ‘true’ benchmark. Although this is the situation in our 

datasets, it may not always be the case, as shown by the case of the USA in DL’s Table 5 (the 

synthetic panel entry rate estimate is 4.4%; the ‘true’ estimate is 5%).  

 We leave open for further research the issue of what is the appropriate benchmark to 

use to assess the accuracy of synthetic panel estimates and, for the rest of this paper, we 

return to using the ‘true’ panel estimates given our DL reference point. 

 

6.2 Changing the household head’s age range 

 

We now consider the impact of narrowing the age range of the household head from 25–75 to 

25–55, retaining all other definitions associated with our leading case. Figure 6 displays 

estimates for HILDA (panel a) and BHPS (panel b) and is directly comparable with Figure 4 

(based on the wider household head age range). 

<Figure 6 near here> 

 Using the narrower age range is associated with a substantial deterioration in the 

accuracy of the HILDA estimates. Now none of the DL-method point estimates of the 

poverty exit rate lie within the reference 95% confidence band, and only one of the entry rate 

estimates does. Indeed several of the point estimates lie outside the corresponding upper 

bound estimate. The poorer quality of the estimates can be traced back to the poorer accuracy 

estimate of the DL rho estimates in this case: compare the ‘Parametric est.’ and ‘Parametric 
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est. true rho’ series in Figure 6 and see also the two corresponding bottom figures in Figure 

1(a).  

 For the BHPS, use of the narrower age range also leads to poorer quality estimates of 

poverty exit and entry rates, but the effect is not nearly as marked as in the Australian case. 

The deterioration in quality is also related to the poorer accuracy of DL rho estimates relative 

to the leading case, but the effects are not as large as for HILDA (Figure 1, panel (b)). 

The Supplementary Material contains a complete collection of figures showing the 

impact of using the 25–55 age range compared to the 25–75 one, and for joint probabilities as 

well as the conditional probabilities discussed here. The appendices confirm that changing 

the definitions away from the leading case scenario generally leads to less accurate estimates 

of all poverty dynamics statistics. 

 

6.3 Changing the poverty line to 50% of the contemporary median  

 

We now consider the impact of changing the poverty line to 50% of contemporary national 

median income (from 60%), but otherwise retaining all other leading case definitions. Figure 

7 shows the joint probability estimates for HILDA and Figure 8 shows them for the BHPS. 

Figure 9 shows the estimates of poverty exit and entry probabilities for both countries. 

Compare these figures with Figures 2, 3 and 4, respectively, for the leading case. 

 The most important finding is that, with the lower poverty line, the DL method 

estimates for Australia are more accurate. For example, the number of estimates of the joint 

exit probability that lie within benchmark 95% confidence interval increases from 3 out of 14 

to 10. For the joint persistently non-poor probability, the corresponding numbers are an 

increase from 3 to 9 and, for the joint entry probability, an increase from 2 to 7. There are 

corresponding improvements in the accuracy of the DL-method estimates of poverty exit 

rates (the number within the reference confidence band increasing from 2 to 10) and of 

poverty entry rates (the number increasing from 2 to 7): see Figure 9(a). 

<Figures 7, 8, and 9 near here> 

 There is also some increase in estimate accuracy associated with using the lower 

poverty line in the British case though the effect is less noticeable. Indeed, the joint poverty 

persistence probability is now less accurately estimated by the DL method, with number of 

estimates lying in the reference 95% confidence band falling to 9/17 compared to 17/17 in the 

leading case scenario. There is no change in the number of estimates of the joint non-poverty 

persistence probability within the reference band (9/17), but the number increases to 11 from 
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9 for the joint exit probability and to 13 from 8 for the joint entry probability. See Figure 8. 

The accuracy of the DL-method estimates of poverty exit rates also improves compared to the 

leading case scenario (the number within the reference confidence band increases from 9 to 

14) and of poverty entry rates (the number increases from 9 to 13): see Figure 9(b). 

 Our analysis demonstrates that the accuracy of the DL-method estimates of poverty 

dynamics statistics is sensitive to the choice of poverty line. DLLM undertook extensive 

analysis of the robustness of their non-parametric bounds method to a wide range of poverty 

lines, for Indonesia and also Vietnam, and they conclude that ‘our approach is found to work 

well for the full possible range of poverty lines that might be specified’ (DL: 122). Cruces et 

al. (2015, section 5.4) report similar findings for Peru, Chile, and Nicaragua. By working 

well, the authors mean that ‘true’ panel estimate lies between the upper and lower bound 

estimates regardless of the poverty line chosen. We find this result too, as our Figures show. 

But our new finding concerns the sensitivity of the DL method’s point estimates. It appears 

that going beyond estimation of bounds to derive point estimates also runs the risk of lack of 

robustness. We have focused on poverty line specifications that are in common use in rich 

countries. An interesting task for future research is analysis of the robustness of the DL 

method to poverty line choice in developing country settings. 

 

6.4 Estimates for population subgroups 

 

DL argue that their method provides good estimates for population subgroups as well as the 

population as a whole, using regional breakdowns to illustrate their case. Here we consider 

the accuracy of subgroup estimates using breakdowns by age, reflecting rich country policy 

interest. Figure 10 shows estimates of poverty exit rates and entry rates for HILDA (panel a) 

and the BHPS (panel b) for individuals aged 18–59 rather than all individuals in households 

with heads aged 25–75 (as in Figure 4). For corresponding estimates for individuals aged 0–

17, and aged 60–75, see the Supplementary Material, which also shows subgroup estimates of 

joint probabilities.  

 The HILDA estimates of poverty exit rates for the 18–59 subgroup are noticeably 

more accurate than those for all individuals, with 10/14 estimates within the 95% confidence 

interval around the ‘true’ estimates. The figures in the Supplementary Material show that the 

poor performance of the estimates for all individuals (only 3/14 estimates within the 

reference band; see Figure 4) is due to the poor accuracy of the estimates for the 60–75 

subgroup (and not the 0–17 subgroup). The HILDA estimates of the poverty entry rates for 
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the 18–59 subgroup are less accurate than those for all individuals. The number of estimates 

within the benchmark band is 1/14 (rather than 2/14) and the synthetic panel estimates over-

estimate the ‘true’ panel estimates by a greater amount. In contrast, the estimates for the 0–17 

and 60–75 subgroups are noticeably more accurate than the estimates for all individuals. 

<Figure 10 near here> 

 The BHPS results have similarities to the HILDA ones. The estimates of poverty exit 

rates for individuals aged 18–59 are slightly more accurate than the corresponding estimates 

for all individuals (14/17 estimates within the benchmark confidence interval rather than 

10/17) but, by contrast with the HILDA estimates, the inaccuracy in the estimates for all 

individuals is accounted for by the estimates for the 0–17 subgroup rather than the 60–75 

subgroup. The BHPS estimates of the poverty entry rates for the 18–59 subgroup are less 

accurate than their counterparts for all individuals, with the number of estimates within the 

benchmark confidence interval being only 1/17 (compared with 8/17). As for HILDA, the 

estimates for the 0–17 and 60–75 subgroups are more accurate than the estimates for all 

individuals. 

 Our overall conclusion regarding the accuracy of subgroup estimates is more 

equivocal than DL’s. In our analysis, some of the estimates for some subgroups and for some 

statistics (conditional or joint probabilities) are more accurate than the corresponding 

estimates for all individuals. At the same time, some are noticeably less accurate.  

 

 

7. Conclusions 

 

Our analysis shows that the DL method performs less well when applied to Australian and 

British data than it does in previous studies using data for middle- and low-income countries. 

To what extent are our findings about validity generally applicable and to what extent do they 

arise from having analysed two particular rich countries for which high-quality panel data 

exist?  

 Clearly, our findings about the potentially poor accuracy of synthetic panel estimates 

are less of an issue in contexts where there are no panel data at all. As DL point out, ‘… this 

basic methodology offers significant potential towards a better understanding of poverty 

dynamics in settings where panel data are absent and can serve as a rather promising avenue 

for further research’ (p. 37; emphasis added). Thus, synthetic panel estimates have potential 
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in many developing countries, and also in rich country contexts where panel data are 

unavailable or of doubtful quality.  

Our research shows that there is scope for further research that is relevant for 

developing as well as developed countries. For example, it would be useful to know whether 

some of the sensitivities in the DL method sensitivities we have found, such as to the choice 

of head’s age range and to the poverty line, are also present in other country contexts. We 

also need further research comparing the DL method with other synthetic panel approaches 

such as that proposed by Bourguignon and Moreno (2015). Garcés Urzainqui (2017) is the 

only study to do this to date. 

 Aside from data availability and quality issues, there is the question of whether the 

synthetic panel approach is less applicable to high-income countries rather than middle- or 

low-income countries because the underlying assumptions are less appropriate or the income 

modelling does not work so well in high-income country contexts (or, related, the nature of 

the income distribution around the poverty line is different in high-income countries). In this 

connection we note that, of the five countries used in DL’s validation study, the synthetic 

panel estimates are slightly less accurate for the one rich country they included (USA): 

compare the ‘goodness of fit’ statistics in their Tables 3–5. 

 Key assumptions in DLLM’s parametric bounds and DL’s point estimate approaches 

are that Year 1 and Year 2 incomes are bivariate lognormally distributed and that income 

predictors are time-invariant (see Section 2). We have checked the lognormality of the 

marginal distributions and it appears that this issue is no greater a problem in HILDA and the 

BHPS than it was for DL’s study countries (see the Supplementary Material, Appendices A3, 

B3). We have also compared bivariate densities of model residuals with bivariate densities of 

standard normal distributions with the same  as the estimated one. Contour plots for each 

country year-pair are quite similar (see the Supplementary Material, Appendices A5, B5). 

Nevertheless, it may be that a different approach from bivariate normality, e.g. involving 

copula specifications for dependence, is more fruitful. 

 Regarding the success of the income modelling in different country contexts, we note 

that the adjusted-R2 of our income regressions based on HILDA and BHPS data are lower 

than the adjusted-R2 that DLLM and DL report. (Cruces et al. 2015 do not report R2.) For 

example, DL report adjusted-R2 for the USA between 0.29 and 0.34 (Appendix 2, Table 2.1) 

whereas our adjusted-R2 for Australia and Britain are around two-thirds of the US values (see 

the Supplementary Material), although the income predictors are much the same in all three 
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countries.  

The income predictions are likely to be one source of the different validity findings, 

but they are unlikely to be the main one. DL undertake simulation analysis comparing 

estimate validity for a scenario in which analysts have access to the full set of income 

predictor variables with other scenarios in which analysts have fewer variables (the bivariate 

normality assumption is maintained). DL (p. 27) report that, even when few time-invariant 

variables are available, the synthetic panel estimates compare favourably with their true 

counterparts (as long as the sample size is not very large – larger than the samples we have 

used in our study). DL’s simulation finding is consistent with our finding (cited in Section 3) 

that using a smaller set of income predictors led to very similar synthetic panel estimates and 

hence assessments of accuracy. More extensive simulation analysis, building in a number of 

other departures from the DL modelling assumptions (including bivariate lognormality), may 

help unravel which factors contribute most to the differences in synthetic panel estimate 

validity across countries. 

Although our study focuses on the DL method, we have also derived DLLM 

parametric bounds estimates for the same sets of assumptions and definitions. The important 

finding is that the bounds virtually always include the ‘true’ panel estimate for each poverty 

dynamics statistic, year, and country. (The exceptions concern the joint non-poor persistence 

probability: see Figures 2 and 3. But even in these cases the 95% confidence interval includes 

the upper bound.) This suggests, first, that researchers employing the DL (or related) method 

should always show DLLM parametric bounds estimates as well as point estimates. Second, 

there may be significant returns to investments in getting estimates of  from external sources 

that are as credible and as narrow as possible.  
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Table 1. Estimates of ρ (year-pair averages), by cohort definition and household head’s 

age range: (a) HILDA  
 
 Cohort definition 

 YOB(1) YOB(5) 

Sex* 

YOB(5) 

Sex* 

YOB(10) 

COB* 

YOB(3) 

COB* 

YOB(5) 

COB* 

YOB(10) 

(i) Sample: household head aged 25–55 

Panel rho 
0.74 0.74 0.74 0.74 0.74 0.74 0.74 

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

DL rho  
0.14 0.61 0.55 0.74 0.35 0.49 0.67 

(0.19) (0.29) (0.20) (0.19) (0.21) (0.21) (0.19) 

No. of cohorts 31 6 12 6 20 16 9 

Av. cohort size 135 689 345 686 318 467 901 

Cohort R2 0.02 0.01 0.02 0.01 0.02 0.02 0.02 

(ii) Sample: household head aged 25–75 

Panel rho 
0.73 0.73 0.73 0.73 0.73 0.73 0.73 

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

DL rho  
0.54 0.87 0.78 0.88 0.64 0.71 0.82 

(0.10) (0.07) (0.08) (0.07) (0.11) (0.09) (0.08) 

No. of cohorts 51 10 20 10 32 27 15 

Av. cohort size 123 621 312 619 304 404 781 

Cohort R2 0.05 0.04 0.05 0.04 0.05 0.05 0.05 

Notes. The rho estimates are the average of the estimates for each of the 14 consecutive year-pairs of HILDA 

data (2001/2002 to 2014/2015). The estimates for each year-pair are based on disjoint subsamples representing 

averages over 50 sample splits. Shown in parentheses are the standard deviations of the corresponding rho 

estimates, calculated over all 50 sample splits and 14 year-pairs. Each column represents a different cohort 

definition, where YOB(s) = year of birth (at intervals of s years), COB = Country of birth (Australia, English 

speaking country, non-English-speaking country). All estimates are weighted and adjusted for survey design, 

with the exception of the number of cohorts and average cohort size (which are unweighted). Panel rho: ‘true’ 

correlation between residuals of Year 1 and Year 2 income model (see eqn. 3 in main text). Cohort R2: adjusted 

R2 of the regression of income on cohort variables. 
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Table 2. Estimates of ρ (year-pair averages), by cohort definition and household head’s 

age range: (b) BHPS 
 

 Cohort definition 

 YOB(1) YOB(3) YOB(5) YOB(10) Sex*YOB(5) Sex*YOB(10) 

(i) Sample: household head aged 25–55 

Panel rho 
0.71 0.71 0.71 0.71 0.71 0.71 

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 

DL rho  
0.23 0.52 0.65 0.87 0.68 0.84 

(0.24) (0.30) (0.30) (0.20) (0.16) (0.13) 

No. of cohorts 28 10 6 3 12 6 

Av. cohort size 72 194 323 641 174 345 

Cohort R2 0.03 0.02 0.02 0.02 0.04 0.04 

(ii) Sample: household head aged 25–75 

Panel rho 
0.71 0.71 0.71 0.71 0.71 0.71 

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

DL rho  
0.43 0.69 0.79 0.89 0.73 0.85 

(0.17) (0.16) (0.13) (0.10) (0.11) (0.08) 

No. of cohorts 42 17 10 5 20 10 

Av. cohort size 75 181 297 590 159 315 

Cohort R2 0.05 0.04 0.04 0.03 0.06 0.05 

 

Notes. The rho estimates are the average of the estimates for each of the 17 consecutive year-pairs of BHPS data 

(1991/1992 to 2007/2008). The estimates for each year-pair are based on disjoint subsamples representing averages 

over 50 sample splits. Shown in parentheses are the standard deviations of the corresponding rho estimates, calculated 

over all 50 sample splits and 17 year-pairs. Each column represents a different cohort definition, where YOB(s) = year 

of birth (at intervals of s years). All estimates are weighted and adjusted for survey design, with the exception of the 

number of cohorts and average cohort size (which are unweighted). Panel rho: ‘true’ correlation between residuals of 

Year 1 and Year 2 income model (see eqn. 3 in main text). Cohort R2: adjusted R2 of the regression of income on cohort 

variables. 
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Figure 1. Year-by-year variation in estimates of , by cohort definition and household head’s age range 

(a) HILDA 

 
(b) BHPS 

 
Notes. See main text, and Tables 1 and 2, for explanations of the cohort definitions. 
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Figure 2. Estimates of joint poverty probabilities, by year (‘leading case’ definitions): HILDA 

 
Notes. Leading case definitions: household head aged 25–75 years in Year 1, cohort definition COB*YOB(5), poverty line is 60% of contemporary median income. Estimates refer to all 

individuals living in households with a head aged 25–75.  
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Figure 3. Estimates of joint poverty probabilities, by year (‘leading case’ definitions): BHPS 

 
Notes. Leading case definitions: household head aged 25–75 years in Year 1, cohort definition SEX*YOB(5), poverty line is 60% of contemporary median income. Estimates refer to all 

individuals living in households with a head aged 25–75.  
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Figure 4. Estimates of poverty exit and entry probabilities, by year (‘leading case’ definitions)  
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Figure 5. ‘True’ versus ‘standard panel’ estimates of poverty exit and entry probabilities, by year (‘leading case’ definitions)  
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Figure 6. Estimates of poverty exit and entry probabilities, by year, household head aged 25–55 (‘leading case’ definitions otherwise)  
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Figure 7. Estimates of joint poverty probabilities, by year, poverty line is 50% contemporary median (‘leading case’ definitions otherwise): HILDA 
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Figure 8. Estimates of joint poverty probabilities, by year, poverty line is 50% contemporary median (‘leading case’ definitions otherwise): BHPS
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Figure 9. Estimates of poverty exit and entry rates, by year, poverty line is 50% contemporary median (‘leading case’ definitions otherwise)  
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Figure 10. Estimates of poverty exit and entry rates, by year, individuals aged 18–59 (‘leading case’ definitions otherwise) 

 


