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Abstract
We solve a problem of Krivelevich, Kwan and Sudakov con-

cerning the threshold for the containment of all bounded

degree spanning trees in the model of randomly perturbed

dense graphs. More precisely, we show that, if we start with

a dense graph G𝛼 on n vertices with 𝛿(G𝛼) ≥ 𝛼n for 𝛼 >

0 and we add to it the binomial random graph G(n,C∕n),
then with high probability the graph G𝛼 ∪ G(n,C∕n) contains

copies of all spanning trees with maximum degree at most Δ
simultaneously, where C depends only on 𝛼 and Δ.
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1 INTRODUCTION

Many problems from extremal graph theory concern Dirac-type questions. These ask for asymptoti-

cally optimal conditions on the minimum degree 𝛿(Gn) for an n-vertex graph Gn to contain a given

spanning graph Fn. Typically, there exists a constant 𝛼 > 0 (depending on the family (Fi)i≥1) such

that 𝛿(Gn) ≥ 𝛼n implies Fn ⊆ Gn. A prime example is Dirac’s theorem [10] stating that 𝛿(Gn) ≥ n∕2

ensures that Gn is Hamiltonian if n ≥ 3.
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On the other hand, a large branch of the theory of random graphs studies when random graphs

typically contain a copy of a given spanning structure Fn. Let G(n, p) be the n-vertex binomial random

graph, where each of the
(n

2

)
possible edges is present independently at random with probability

p= p(n). A classical result of Bollobás and Thomason [8] states that every nontrivial monotone

property has a threshold in G(n, p). Since containing a copy of (a sequence of graphs) Fn is a mono-

tone property, there exists a threshold function p̂ = p̂(n)∶ N → [0, 1] such that, if p = o(p̂), then

limn→∞ P[Fn ⊆ G(n, p)] = 0, whereas, if p = 𝜔(p̂), then limn→∞ P[Fn ⊆ G(n, p)] = 1. When the

conclusion of the latter case holds, we say that G(n, p) contains Fn asymptotically almost surely
(a.a.s.). For example, a famous result of Koršunov [16] and Pósa [23] asserts that the threshold for

Hamiltonicity in G(n, p) is (log n)∕n.

Bohman, Frieze, and Martin discovered the following phenomenon in [7]. Given a fixed 𝛼 > 0,

they started with a graph G𝛼 on n vertices with 𝛿(G𝛼) ≥ 𝛼n. Here, 𝛼 can be arbitrarily small and

hence G𝛼 can be far from containing any Hamilton cycle. They proved that, after adding m = C(𝛼)n
edges uniformly at random to G𝛼 , the new graph G becomes Hamiltonian a.a.s., where C(𝛼) is a

constant that depends only on 𝛼. Letting G𝛼 be the complete unbalanced bipartite graph K𝛼n, (1−𝛼)n,

one sees that the addition of linearly many edges to G𝛼 is necessary for this result to hold in general.

Furthermore, clearly, the conditions on 𝛿(G𝛼) and on p = m∕
(n

2

)
in this result are weaker than in

the corresponding Dirac-type problem and the threshold problem, respectively. More precisely, the

probability p turns out to be smaller by a factor of Θ(log n). Here, we have switched from choosing m
edges uniformly at random to the binomial G(n, p) model, which is known to be essentially equivalent

when p = m∕
(n

2

)
(see, eg, [13]).

The model G𝛼 ∪ G(n, p) is known as the randomly perturbed graph model. Typically p = o(1),
so an “addition” of G(n, p) to the dense graph G𝛼 corresponds to a small random perturbation in the

structure of G𝛼 . This model and its related generalizations to hypergraphs and digraphs sparked a great

deal of research in recent years.

In this paper we are concerned with spanning trees in randomly perturbed graphs. For almost
spanning trees it was shown by Alon, Krivelevich and Sudakov [2] that, for some constant C = C(𝜀,Δ),
the random graph G(n,C∕n) alone a.a.s. contains any tree with at most (1−𝜀)n vertices and maximum

degree at most Δ, where the bounds on C = C(𝜀,Δ) have subsequently been improved [3]. Since the

random graph G(n,C∕n) a.a.s. contains isolated vertices, it obviously does not contain spanning trees.

The problem of determining the threshold of bounded degree spanning trees attracted much attention.

Recently, Montgomery [22] showed that for each constant Δ and every sequence of trees Tn with

maximum degree Δ, the threshold in G(n, p) for a copy of Tn to appear is (log n)∕n (see also [21]).

However, Krivelevich, Kwan and Sudakov [18] showed that, again, a smaller probability suffices in

the randomly perturbed graph model. They proved that G𝛼 ∪ G(n, p) a.a.s. contains a given spanning

tree Tn with maximum degree at most Δ when p = C(Δ, 𝛼)∕n.

In the concluding remarks of [18], Krivelevich, Kwan and Sudakov raised the question of whether

G𝛼 ∪ G(n,D∕n) contains all spanning trees of maximum degree at most Δ simultaneously, for some

constant D = D(Δ, 𝛼). The purpose of this paper is to answer their question in the affirmative. For

stating our result we need some notation. For a family of graphs, we say that a graph G is -universal
if G contains a copy of every graph F from  . We denote by  (n,Δ) the family of all trees of maximum

degree at most Δ on n vertices.

Theorem 1 For each 𝛼 > 0 and Δ ∈ N, there exists a constant D = D(Δ, 𝛼) such that the following
holds. If G𝛼 is an n-vertex graph with 𝛿(G𝛼) ≥ 𝛼n, then the randomly perturbed graph G𝛼 ∪G(n,D∕n)
is a.a.s.  (n,Δ)-universal.
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This result is asymptotically optimal for 0 < 𝛼 < 1∕2, as with G𝛼 the complete unbalanced bipartite

graph K𝛼n,(1−𝛼)n we need a linear number of edges from G(n, p) already for the perfect matching. For

𝛼 > 1∕2 this follows from a more general result, applied to G𝛼 alone, due to Komlós, Sárközy, and

Szemerédi [15], for trees with maximum degree up to n∕ log n. Kim and Joos [14] have succeeded in

transferring this result to the perturbed model.

Theorem 1 is an immediate consequence of a technical theorem, Theorem 2, which states that the

union of G𝛼 with any reasonably expanding graph G is  (n,Δ)-universal. The proof of Theorem 2

relies on the use of reservoir sets resembling those introduced in [9] as part of the so-called assisted

absorption method. The novelty in our proof is that we construct these reservoir sets using expanding

graphs rather than random graphs, which is not possible with the techniques from [9] (see also the

discussion in Section 2 and the proof of Lemma 5 in Section 3.2).

Before we turn to the details of our embedding technique, we mention further results concerning

randomly perturbed graphs. Further spanning structures whose appearance in randomly perturbed

graphs has been studied are F-factors (for fixed graphs F) [4], squares of Hamilton cycles and copies

of general bounded degree spanning graphs [9], perfect matchings and loose Hamilton cycles in uni-

form hypergraphs [17], and tight Hamilton cycles in hypergraphs [11]. Most of the mentioned results

exhibit the following phenomenon: in the presence of a dense graph G𝛼 , a smaller edge probability

than in G(n, p) alone suffices. The only exception to this rule so far are F-factors for certain nonstrictly

balanced graphs F covered in [4]. Moreover, some variations of such results when 𝛼 is at least some

positive constant c (which depends on other parameters of the problems at hand) were considered

in [5, 6, 20].

2 NOTATION, MAIN TECHNICAL RESULT, AND PROOF OVERVIEW

We will use standard graph theoretic notation throughout. In the following, we briefly recap most of

the relevant terminology. Given graphs G and H, write |G| = |V(G)| and G∖H = G[V(G)∖V(H)], that

is, the induced subgraph of G on V(G)∖V(H). Throughout this note we omit floors and ceilings. For

two not necessarily disjoint sets U and W of vertices of a graph G we write e(U,W) for the number of

edges with one endpoint in U and the other in W, where we count edges that lie in U ∩ W twice.

We say that an n-vertex graph G is an (n, p, 𝜀,C)-graph if Δ(G) ≤ Cpn and, for any U, W ⊆

V(G) such that |U|, |W| ≥ 𝜀n, we have e(U,W) ≥ (p∕C)|U||W|. We further denote the family of

(n, p, 𝜀,C)-graphs by (n, p, 𝜀,C). Intuitively, the graphs from (n, p, 𝜀,C) are graphs with a certain

degree bound which are expanding for vertex subsets of linear size.

Our main technical result states that perturbing graphs G𝛼 with minimum degree at least 𝛼n by

graphs G ∈ (n,D∕n, 𝜀,C) results in  (n,Δ)-universal graphs.

Theorem 2 (Main technical result). For any 𝛼 > 0 and integers C ≥ 2 and Δ ≥ 1, there exist 𝜀 > 0,
D0 and n0 such that the following holds for any D ≥ D0 and n ≥ n0. Suppose G ∈ (n,D∕n, 𝜀,C) and
G𝛼 are n-vertex graphs on the same vertex set and 𝛿(G𝛼) ≥ 𝛼n. Then H ∶= G𝛼∪G is  (n,Δ)-universal.

We will show in Section 5 that this result implies Theorem 1. In the remainder of this section, we

give a brief outline of our proof of Theorem 2.

2.1 Proof overview

Let G ∈ (n,D∕n, 𝜀,C). We embed an arbitrary T ∈  (n,Δ) into H ∶= G𝛼 ∪G in three phases. In the

first phase, we find a subtree T1 of T (see Lemma 3) of small linear size, say 𝛽n with 𝛽 ≪ 𝛼, and we

embed this subtree T1 into H using a randomized algorithm (see Lemma 5). In doing so, we can show
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that there is some such embedding in which, for any given pair of vertices u, v ∈ V(H), there are at

least 3Δ𝜀n vertices w ∈ V(T1) with NT (w) ⊆ V(T1) such that w is embedded into NH(u) and NT (w) is

embedded into NH(v)—a fact which will turn out to be crucial later. We denote by BT ,H(u, v) such a set

of vertices w, and refer to such sets BT ,H(u, v) as reservoir sets (see Section 3.2 for the formal definition).

Alternatively, calling them switching sets would emphasize that each of them can only be used once.

In the second phase, we extend the tree T1 to an almost spanning subtree T ′ of T with |T∖T ′| = 2𝜀n.

For this purpose we use a theorem of Haxell [12] (see Corollary 6), which ensures such almost spanning

embeddings exist given sufficient expansion in the host graph H.

Finally, in the third phase, we complete our embedding using a greedy approach and the reservoir

sets BT ,H(u, v) for the following swapping trick: since T ′ is a subtree of T , we can extend it by consec-

utively appending degree-1 vertices and thus growing the tree T ′ into T . Suppose T ′ = T ′
0
⊆ · · · ⊆

T ′
2𝜀n = T is the sequence of subtrees of T that we encounter in this process. Suppose we already have

the embedding gi−1 ∶ V(T ′
i−1

) → V(H), and we wish to extend it to gi ∶ V(T ′
i ) → V(H) by defining

the image of the leaf b ∈ V(T ′
i )∖V(T ′

i−1
). Given some vertex v of H available for embedding b (that

is, v ∉ gi−1(V(T ′
i−1

))), if there is an edge in H from v to gi−1(u), where u is the parent of b in Ti, then

we simply embed b onto v (that is, we let gi(b) = v). On the other hand, if there is no edge in H
from v to gi−1(u), we proceed as follows. We will set things up so that, by counting, we will be able

to show that there is some c ∈ V(Ti−1) such that c ∈ BT ,H(gi−1(u), v). We then let gi(b) = gi−1(c) and

we let gi(c) = v. This defines a valid embedding gi ∶ V(Ti) → V(H). (We remark that we said that

we would extend gi−1 to gi; as it will be clear by now, this is not strictly speaking correct, as we may

alter gi−1 slightly before extending it to gi.)

As mentioned earlier, the reservoir sets used in our proof are similar to those introduced in the

setting of randomly perturbed graphs in [9]. In that work, the reservoir sets are used to prove a general

result about spanning structures in randomly perturbed graphs, which can be easily applied to consider

the appearance of various different single spanning structures. In particular, this gives a short proof

of the appearance of any single bounded degree spanning tree in this model, a problem that was first

solved in [18]. The argument from [9] does not work for universality statements. However, here we

show that the reservoirs can be found and the swapping trick employed in the completely deterministic

setting by embedding the first part of the tree in a randomized way.

3 AUXILIARY LEMMAS

The lemmas provided in this section will be used in the proof of Theorem 2. We start in Section 3.1

with two lemmas for partitioning the tree T we want to embed. We then explain how we obtain good

reservoir sets by embedding a subtree T1 of T randomly in Section 3.2. Finally, in Section 3.3 we

provide the tools to extend this embedding to an almost spanning subgraph of T .

3.1 Tree partitioning lemmas

Recall that  (n,Δ) is the collection of all trees on n vertices with maximum degree at most Δ, and that

a graph G on n vertices is said to be  (n,Δ)-universal if G contains a copy of T for every T ∈  (n,Δ).
The main assertion of the following lemma is that we can find in any bounded degree tree T a

subtree T1 of roughly any desired size so that removing T1 from T leaves a tree. We will use this lemma

to find a small linear sized subtree T1, which we embed in our first phase.

Lemma 3 Let 𝛽, 𝜀 > 0 and let n, Δ be positive integers such that Δ𝛽 + 2𝜀 < 1. Then, for any
T ∈  (n,Δ), there exist subtrees T1 ⊆ T ′ ⊆ T such that

(a) 𝛽n ≤ |T1| ≤ Δ𝛽n,
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(b) e(T1,T∖T1) = 1, and
(c) |T∖T ′| = 2𝜀n.

Proof Fix any vertex v of T as the root and, for each w ∈ V(T), write Cw for the branch (subtree)

of T consisting of w and all of its descendants. By 𝛽 < 1∕Δ, deg(v) ≤ Δ and averaging, there is

v1 ∈ NT (v) such that |Cv1
| ≥ 𝛽n. If |Cv1

| > Δ𝛽n, then similarly there is a child v2 of v1 such that|Cv2
| ≥ (Δ𝛽n−1)∕(Δ−1) ≥ 𝛽n. Repeating this argument gives a desired v′ such that 𝛽n ≤ |Cv′ | ≤ Δ𝛽n.

Let T1 ∶= Cv′ . Note that (b) holds by the definition of T1. Finally, let T ′ be an (arbitrary) subtree of T
such that T1 ⊆ T ′ ⊆ T and |T∖T ′| = 2𝜀n. ▪

Let T be a tree. Given vertices x1,… , xm of T , let ⟨x1,… , xm⟩T be the minimal subtree of T that

contains the vertices x1,… , xm, which is just the subtree of T obtained from the union of the vertex

sets of all the paths between xi, xj, i ≠ j, in T . For two distinct vertices x, y of T , we write distT (x, y) for

their distance in T , namely, the length of the (unique) path on T connecting x and y. Given a vertex x
of T and a vertex set Y ⊆ V(T) such that x ∉ Y , let distT (x,Y) ∶= miny∈Y distT (x, y).

The following lemma provides us with vertices x1,… , xs in a tree T which cover T well, but are

not too close. In particular, this gives us a collection of stars xi ∪ NT (xi) which are far enough apart

that they are relatively independent.

Lemma 4 For any tree T with maximum degree at most Δ, there exist s ∈ N and vertices x1,… , xs ∈
V(T) such that

(a) for any 2 ≤ i ≤ s, distT (xi, ⟨x1,… , xi−1⟩T ) = 5,
(b) |T|∕(5Δ4) ≤ s ≤ (|T| + 4)∕5, and
(c) distT (x, ⟨x1,… , xs⟩T ) ≤ 4 for all vertices x ∈ V(T).

Proof We start with picking x1 arbitrarily. We greedily pick the vertices x2,… , xs in V(T) sequen-

tially as long as there is a vertex xi such that distT (xi, ⟨x1,… , xi−1⟩T ) = 5. Note that for any 2 ≤ i ≤ s,|⟨x1,… , xi⟩T∖⟨x1,… , xi−1⟩T | = 5, so we inductively get that |⟨x1,… , xs⟩T | = 5s − 4. This implies

s ≤ (|T| + 4)∕5. Since T is connected, the maximality of s implies that distT (x, ⟨x1,… , xs⟩T ) ≤ 4 for

all vertices x ∈ V(T). Thus we have |T| ≤ (5s − 4)Δ4, which implies (b). ▪

3.2 A randomized embedding—controlling reservoir sets

In the following, we define formally the reservoir sets BT ,H(u, v), already mentioned in the proof

overview given in Section 2.1, and show that we can force them to be suitably large. These reservoir

sets will be helpful when finishing the embedding of T , since they will allow us to alter locally par-

tial embeddings that we construct sequentially. We warn the reader that, for technical convenience, the

sets BT ,H(u, v) are defined here in a slightly different manner in comparison with the informal definition

given earlier in Section 2.1. Let V be a set of n vertices. Let G be a graph on V and let T be a tree with

V(T) ⊆ V . For v ∈ V , let

BT ,G(v) ∶=
{

w ∈ V(T) ∶ NT (w) ⊆ NG(v)
}
.

For distinct vertices u and v ∈ V , we define their reservoir set BT ,G(u, v) as follows:

BT ,G(u, v) ∶= BT ,G(v) ∩ NG(u) .
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Recall that the idea is that we can free up any w ∈ BT ,G(u, v) used already in the embedding, by moving

the vertex embedded to w to v. This then allows us to use w for embedding any unembedded neighbor

of the vertex embedded to u.

Our next lemma shows that we can embed the linear sized subtree T1 of T into H = G ∪ G𝛼 using

a randomized algorithm, such that we get large reservoir sets.

Lemma 5 For any 𝛼 > 0 and integers C ≥ 2 and Δ ≥ 1, there exist 𝜀 > 0, D0 and n0, such that the
following holds for D ≥ D0 and n ≥ n0. Suppose G ∈ (n,D∕n, 𝜀,C) and G𝛼 is an n-vertex graph such
that 𝛿(G𝛼) ≥ 𝛼n and V(G) = V(G𝛼) =∶ V. Then, for any tree T1 such that Δ(T1) ≤ Δ and 𝛼n∕(2Δ2) ≤|T1| ≤ 𝛼n∕(2Δ), there is an embedding g of T1 into H ∶= G∪G𝛼 such that |BT̃1,H

(u, v)| ≥ 2(Δ + 3)𝜀n
for any u and v ∈ V, where T̃1 = g(T1).

Proof of Lemma 5 First we choose the parameters D0 and 𝜀 as follows:

D0 ∶= 2CΔ∕𝛼 and 𝜀 ∶= 𝛼Δ+2C−2Δ2−Δ−8Δ−7, (1)

and then we choose n0 large enough.

We apply Lemma 4 to T1 and obtain s ∈ N and vertices x1,… , xs ∈ V(T1) such that, for any

2 ≤ i ≤ s, distT1
(xi, ⟨x1,… , xi−1⟩T1

) = 5, and |T1|∕(5Δ4) ≤ s ≤ (|T1| + 4)∕5. Our embedding of T1

consists of three steps. First we iteratively embed the disjoint stars with centers at x1,… , xs uniformly

at random into stars in H (using only the edges of G) whose vertices have not yet been used as images.

Next we connect these stars and obtain an embedding of a subtree of T1 as the union of the stars and⟨x1,… , xs⟩T1
. At last we embed the rest of the vertices of T1 greedily, which will be possible using G𝛼

as |T1| ≤ 𝛼n∕(2Δ) and 𝛿(G𝛼) ≥ 𝛼n.

The following claim states that we can pick disjoint stars with Δ leaves (that is, copies of K1,Δ)

in G, within which we will later embed the stars in T1 with centers at x1,… , xs.

Claim There is a choice of disjoint stars S1,… , Ss with Δ leaves in G such that, for each u, v ∈ V
there are at least 2(Δ + 3)𝜀n stars among S1,… , Ss with their centers in NG𝛼

(u) and their leaves in
NG𝛼

(v).

Proof of the Claim We randomly and sequentially pick s stars S1,… , Ss with Δ leaves from G, where

each star Si is picked uniformly at random from the copies of K1,Δ which are disjoint from S1,… , Si−1

(we show below that this is indeed possible).

For u, v ∈ V , i ∈ [s], let Yu,v
i be the Bernoulli random variable for the event that x̃i ∈ NG𝛼

(u)
and Ri ⊆ NG𝛼

(v), where x̃i is the center of Si and Ri is the set of leaves of Si. Since 𝛿(G𝛼) ≥ 𝛼n,|T1| ≤ 𝛼n∕(2Δ) and the existing stars cover at most

(Δ + 1)s ≤ (Δ + 1)
(|T1|

5
+ 4

)
≤ (Δ + 1)

(
𝛼n

10Δ
+ 4

)
≤ 𝛼n∕4

vertices, there are at least 3𝛼n∕4 vertices available in both U ∶= NG𝛼
(u)∖

⋃
j∈[i−1] V(Sj) and W ∶=

NG𝛼
(v)∖

⋃
j∈[i−1] V(Sj).

Since G ∈ (n,D∕n, 𝜀,C) and 3𝛼∕4 ≥ 𝜀, e(U,W) ≥ D|U||W|∕(Cn) ≥ 3𝛼D|U|∕(4C). By the

convexity of the binomial function, the number of K1,Δ-stars with center in U and leaves in W is at least

∑
u∈U

(
degW (u)

Δ

)
≥ |U|(∑u∈U degW (u)∕|U|

Δ

)
≥ |U|(3𝛼D∕(4C)

Δ

)
.
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Since Δ(G) ≤ CD, the total number of K1,Δ-stars in G is at most n
(CD

Δ

)
. This allows us to obtain

the following lower bound on E(Yu,v
i ∣ Yu,v

1
,… ,Yu,v

i−1
):

E(Yu,v
i ∣ Yu,v

1
,… ,Yu,v

i−1
) ≥ |U|

n

(
3𝛼D∕(4C)

Δ

)
(CD

Δ

) ≥ 2−Δ−1𝛼Δ+1C−2Δ.

Let p ∶= 2−Δ−1𝛼Δ+1C−2Δ and

x ∶= sp ≥
|T1|
5Δ4

p ≥
𝛼n

2Δ2 ⋅ 5Δ4
⋅

𝛼Δ+1

2Δ+1C2Δ ≥ 4(Δ + 3)𝜀n,

by the choice of 𝜀 in (1). Thus, by Lemma 2.2 (the sequential dependence lemma) from [1] with

𝛿 = 1∕2, or a simple coupling argument, we get

P
(
Yu,v

1
+ · · · + Yu,v

s < 2(Δ + 3)𝜀n
)
≤ P

(
Yu,v

1
+ · · · + Yu,v

s < x∕2
)
< e−x∕12 ≤ e−𝜀n .

Thus by the union bound, we conclude that there is a choice of S1,… , Ss such that, for each u, v ∈ V ,

Yu,v
1

+ · · · + Yu,v
s ≥ 2(Δ + 3)𝜀n, that is, the claim holds. ▪

Now let S1,… , Ss be as given by the claim. Define the embedding g of the stars in T1 on vertices

{x1} ∪ NT1
(x1) ∪ · · · ∪ {xs} ∪ NT1

(xs) by mapping the star (which does not necessarily have Δ leaves)

on vertices {xi} ∪ NT1
(xi) to an arbitrary subset of Si, with xi mapped to the center x̃i. This gives us an

embedding of the forest of stars T[{xi} ∪ NT1
(xi) ∪ · · · ∪ {xs} ∪ NT1

(xs)].
Next we extend our forest by connecting these stars according to the order x1,… , xs, and obtain

an embedding of a subtree of T1 which is the union of the stars and ⟨x1,… , xs⟩T1
. Suppose we have

connected the first i − 1 stars, that is, we have an embedding of ⟨x1,… , xi−1⟩T1
, and now we will

connect it to x̃i, the image of xi. Recall that distT1
(xi, ⟨x1,… , xi−1⟩T1

) = 5 and thus let the path to be

embedded be xi, y1, y2, y3, y4, z. Note that xi, z, y1 are already embedded in H = G ∪ G𝛼 . Moreover,

if z ∈ {x1,… , xi−1}, then y4 has already been embedded; otherwise, fix a neighbor of g(z) in G𝛼

which is not covered by the current partial forest as g(y4). This is possible because 𝛿(G𝛼) ≥ 𝛼n and|T1| ≤ 𝛼n∕(2Δ). Note that, using G𝛼 , there are at least 𝛼n∕2 choices for the image of y2 and at least

𝛼n∕2 choices for the image of y3, so, as G ∈ (n,D∕n, 𝜀,C), we can pick ỹ2 and ỹ3 so that ỹ2ỹ3 is

an edge of G. Thus, the sequence x̃i, g(y1), ỹ2, ỹ3, g(y4), g(z) forms a path in H. Define g(yi) = ỹi for

i = 2, 3. When finished, this completes the second step of the embedding.

For the last step, note that since the partial tree that has been embedded is connected, we can finish

the embedding of T1 by iteratively attaching leaves to the partial embedding. This is always possible

because 𝛿(G𝛼) ≥ 𝛼n and |T1| ≤ 𝛼n∕(2Δ). Let g be the resulting embedding function and T̃1 = g(T1).
By the claim for any u, v ∈ V , there are at least 2(Δ + 3)𝜀n stars from S1,… , Ss such that their

centers are in NG𝛼
(u) and their leaves are in NG𝛼

(v). Since these stars are subtrees of T̃1, we conclude

that |BT̃1,H
(u, v)| ≥ 2(Δ + 3)𝜀n for any u, v ∈ V , as required. ▪

3.3 Almost spanning tree embeddings

To extend T1 to the almost spanning tree T ′, we will use the following corollary of a tree embedding

result of Haxell [12] (this is her Theorem 1 with 𝓁 = 1 and each 𝑑i = Δ). We note that it was first

observed by Balogh, Csaba, Pei, and Samotij [3] that this is applicable in sparse random graphs. For a

graph G and vertex set X ⊆ V(G), we let NG(X) ∶=
⋃

x∈X NG(x).
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Corollary 6 Let T be a tree with t edges and maximum degree at most Δ. Suppose k ≥ 1 is an integer
and G is a graph satisfying the following two conditions:

(i) |NG(X)| ≥ Δ|X| + 1 for every X ⊆ V(G) with 1 ≤ |X| ≤ 2k,
(ii) |NG(X)| ≥ Δ|X| + t + 1 for every X ⊆ V(G) with k < |X| ≤ 2k + 1.

Then G contains T as a subgraph. Moreover, for any vertex x0 of T and any y ∈ V(G), there exists
an embedding f of T into G such that f (x0) = y.

4 MAIN TECHNICAL RESULT

In this section we prove our main technical result, Theorem 2. Given T ∈  (n,Δ) we will use Lemma 3

to obtain a subtree T1 of T of small linear size, which we embed with the help of Lemma 5 and

then extend to the embedding of an almost spanning subtree of T using Corollary 6. We then use the

reservoir sets BT ,H(u, v) to extend the embedding to cover the last few vertices.

Although we risk being somewhat repetitive, with the relevant definitions at hand, we are able

to say more precisely how the sets BT ,H(u, v) will help us to embed these last few vertices. Suppose

we have a partial embedding g ∶ T ′ → H of our tree T into the host graph H, such that T ′ ⊆ T is

connected and let T̃ ′ = g(T ′). Since T ′ is a subtree in T we can extend it vertex by vertex by connecting

T ′ with some new vertex b ∈ V(T∖T ′), which has one neighbor in V(T ′). Assume that this neighbor

a of b in T has been embedded to u, but none of the unused vertices is connected to u in H so that we

cannot simply embed b to one of the unused vertices. Instead, if there exists an unused vertex v such

that BT̃ ′,H(u, v) ≠ ∅, then we can proceed with the embedding as follows. Let w ∈ BT̃ ′,H(u, v) and note

that, by the definition of BT̃ ′,H(u, v), we have w ∈ V(T̃ ′). Let c = g−1(w), and let g′(x) = g(x), for

any x ∈ V(T ′)∖{c}, g′(c) = v and g′(b) = w. Using the definition of BT̃ ′,H(u, v), this gives a partial

embedding g′ into H with one more leaf, b, embedded. We will show that we only need this procedure

to embed the last 2𝜀n vertices of T , and, for any u, v ∈ V , by the property guaranteed by Lemma 5, the

reservoir sets BT̃ ′,H(u, v) will be large enough to proceed greedily.

Proof Given 𝛼, C and Δ, set 𝜀′ = 𝛼Δ+2C−2Δ2−Δ−8Δ−7, a constant small enough that by taking

D0 and n0 to be large we can use the conclusion of Lemma 5 with 𝜀 = 𝜀′ (cf. (1)). Set 𝜀 ∶=
min{𝛼∕(3Δ), 𝜀′∕(2Δ)}. Suppose then that D ≥ D0 and n ≥ n0, G ∈ (n,D∕n, 𝜀,C) and that G𝛼 is an

n-vertex graph on V(G) with 𝛿(G𝛼) ≥ 𝛼n, and let T ∈  (n,Δ).
By Lemma 3 with 𝛽 = 𝛼∕(2Δ)2, there exist subtrees T1 ⊆ T ′ ⊆ T so that 𝛼n∕(2Δ)2 ≤ |T1| ≤

𝛼n∕(4Δ), e(T1,T∖T1) = 1 and |T∖T ′| = 2𝜀′n. We apply Lemma 5 and obtain an embedding g of

T1 in H ∶= G𝛼 ∪ G such that |BT̃1,H
(u, v)| ≥ 2(Δ + 3)𝜀′n for any u, v ∈ V , where T̃1 = g(T1). Let

ab ∈ E(T) be the unique edge between T1 and T∖T1 such that a ∈ V(T1), and let ã = g(a). Define

T ′′ ∶= T ′∖(T1∖{a}) and H′ ∶= H∖(V(T̃1)∖{ã}).
We want to apply Corollary 6 to find an embedding g′ of T ′′ in H′, with g′(a) = ã. So we need

to verify the assumptions of Corollary 6 with k = 𝜀n − 1. First, note that by 𝛿(G𝛼) ≥ 𝛼n and |T1| ≤
𝛼n∕(2Δ), we know that 𝛿(H′) ≥ 𝛼n−|T1| ≥ 𝛼n∕2 ≥ Δ ⋅2k+1. Thus, condition (i) of Corollary 6 holds

for sets on at most 2k vertices. Second, we claim that for any set X ⊆ V(H′) of size at least k + 1 = 𝜀n
we have |V(H′)∖NH′ (X)| < 𝜀n. Indeed, since G ∈ (n,D∕n, 𝜀,C) and both X and V(H′)∖NH′ (X) are

subsets of V(H), if |V(H′)∖NH′ (X)| ≥ 𝜀n then there is an edge in H, and hence H′, between X and

V(H′)∖NH′ (X), a contradiction. Thus, since |T1|−1 = |T ′|− |T ′′| = |H|− |H′| and |H|− |T ′| = 2𝜀′n,

we have |H′| − |T ′′| = |H| − |T ′| = 2𝜀′n, and thus, as 𝜀′ ≥ 2Δ𝜀,

|N(X)| ≥ |H′| − 𝜀n = |T ′′| + (2𝜀′ − 𝜀)n > |T ′′| + Δ ⋅ (2k + 1).
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Thus, we can apply Corollary 6 and obtain the embedding g′ of T ′′ into H′. Combine g and g′ to

obtain an embedding g0 of T ′ in H, and write T̃ ′ = g0(T ′).
For any u, v,w ∈ V and any two trees S and S′, observe that if NS(w) = NS′ (w) and w ∈ BS,H(u, v),

then w ∈ BS′,H(u, v). Since, by construction, for any vertex w ∈ V(T̃1)∖{ã} we have NT̃1
(w) = NT̃ ′ (w),

and so |BT̃ ′,H(u, v)| ≥ |BT̃1,H
(u, v)| − 1 ≥ 2(Δ + 3)𝜀′n − 1 for any u, v ∈ V .

It remains to embed the 2𝜀′n vertices in V(T∖T ′) to H. We achieve this using BT̃ ′,H(u, v) as explained

at the beginning of this section. More precisely, since T ′ is connected, we can obtain T from T ′ by

iteratively attaching one new leaf at a time, say using the sequence T ′ ∶= T ′
0
⊆ T ′

1
⊆ · · · ⊆ T ′

2𝜀n = T .

We claim that we can extend the embedding inductively while keeping |BT̃ ′
i ,H

(u, v)| ≥ |BT̃ ′
i−1

,H(u, v)|−
(Δ + 3) for every i ∈ [2𝜀′n], where each T̃ ′

i is the image of T ′
i in H. Indeed, fix some index i ∈ [2𝜀′n]

and now we need to attach the vertex bi ∈ V(T ′
i ∖T ′

i−1
), whose parent ai ∈ T ′

i−1
has been embedded

to ãi. Pick any vertex v′ in V(H)∖V(T̃ ′
i−1

). Since

|BT̃ ′
i−1

,H(ãi, v′)| ≥ |BT̃ ′,H(ãi, v′)| − (i − 1)(Δ + 3) > 2(Δ + 3)𝜀′n − 1 − (i − 1)(Δ + 3) > 0,

we can pick w ∈ BT̃ ′
i−1

,H(ãi, v′) and let c = g−1
i−1

(w). We now swap c out of the current embedding and

use its previous image w to embed bi, and embed c to v′ instead. Precisely, define the new embedding

gi by gi(x) = gi−1(x) for any x ∈ V(T ′
i−1

)∖{c}, gi(c) = v′ and gi(bi) = w. Let T̃ ′
i = gi(T ′

i ). Note that

NT̃ ′
i
(x) = NT̃ ′

i−1

(x) for all but at most Δ+ 3 vertices x in V(T̃i−1): the vertices ãi, v′,w and the neighbors

of w in T̃i−1—because they are the vertices that are incident to the edges in E(T̃ ′
i )∖E(T̃i−1). Thus, we

have |BT̃ ′
i ,H

(u, v)| ≥ |BT̃ ′
i−1

,H(u, v)| − (Δ + 3), for any u, v ∈ V , and we are done. ▪

5 TREE UNIVERSALITY IN RANDOMLY PERTURBED DENSE GRAPHS

In this section, we show how Theorem 2 implies Theorem 1, using the following simple proposition.

Proposition 7 For any 𝜀 > 0 and C ≥ 2 there exists D0 such that the following holds for any D ≥ D0.
The random graph G(n,D∕n) a.a.s. contains some graph G ∈ (n,D∕n, 𝜀,C).

Proof Choose D0 such that D0 ≥ 104𝜀−2. Let D ≥ D0 and H ∶= G(n,D∕n). Note that, by a simple

Chernoff bound, the probability that, for all U,W ⊆ V(H), with |U|, |W| ≥ 𝜀n∕10, we have

3D|U||W|∕(4n) ≤ eH(U,W) ≤ 5D|U||W|∕(4n) (2)

is at least 1− 22ne−D𝜀2n∕4800 = 1− o(1). Assume then that the property in (2) holds. We will show that

there are few vertices with high degree in H.

Let A ⊆ V(H) be the set of vertices with degree exceeding 5D∕4 in H, and note that it satisfies

eH(A,V(H)) > 5D|A|∕4. Thus, by the property in (2), we have that |A| < 𝜀n∕10.

If we delete all the edges incident to vertices of degree larger than CD ≥ 5D∕4 from H then we

are left with a graph G of maximum degree at most CD satisfying that for any two sets U and W of

size at least 𝜀n, we have

eG(U,W) ≥ 3

4

D
n
⋅ |U∖A| ⋅ |W∖A| ≥ 3

4

D
n
⋅ (9|U|∕10) ⋅ (9|W|∕10) ≥ 1

C
D
n
|U||W|.

Thus, G is in (n,D∕n, 𝜀,C), as required. ▪
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Proof of Theorem 1 Given 𝛼 and Δ, let 𝜀, D0 and n0 be given by Theorem 2 on inputting 𝛼, Δ and

C = 2. We choose D′
0
≥ D0 so that Proposition 7 with 𝜀 and C is applicable for D ≥ D′

0
. Since

a.a.s. the random graph G(n,D∕n) contains a graph from (n,D∕n, 𝜀,C) we have, by Theorem 2, that

G𝛼 ∪ G(n,D∕n) is a.a.s.  (n,Δ)-universal. ▪

6 CONCLUDING REMARKS

A graph G is called an (n, 𝑑, 𝜆)-graph if |G| = n, G is 𝑑-regular and the second largest eigenvalue

of the adjacency matrix of G in absolute value is at most 𝜆. There is extensive literature on the prop-

erties of (n, 𝑑, 𝜆)-graphs, see, for example, a survey of Krivelevich and Sudakov [19]. It is known

that (n, 𝑑, 𝜆)-graphs G satisfy the so-called expander mixing lemma, that is, for all vertex subsets

A, B ⊆ V(G), we have |||e(A,B) − 𝑑

n
|A||B|||| ≤ 𝜆

√|A||B|.
Our main technical result, Theorem 2, easily implies that, for any 𝛼 and Δ, there is some sufficiently

small 𝜀 such that, for any sufficiently large 𝑑 and 𝜆 ≤ 𝜀𝑑∕2, any union of G𝛼 , a graph on n vertices

with minimum degree at least 𝛼n, with an (n, 𝑑, 𝜆)-graph is  (n,Δ)-universal.

ACKNOWLEDGMENTS

J.B. is partially supported by EPSRC (EP/R00532X/1). J.H. is supported by FAPESP (2014/18641-5,

2013/03447-6). Y.K. is partially supported by FAPESP (2013/03447-6) and CNPq (310974/2013-5,

311412/2018-1, 459335/2014-6). O.P. and Y.P. are supported by DFG grant PE 2299/1-1. The coop-

eration of the authors was supported by a joint CAPES-DAAD PROBRAL project (Proj. no. 430/15,

57350402). FAPESP is the São Paulo Research Foundation. CNPq is the National Council for

Scientific and Technological Development of Brazil.

REFERENCES
1. P. Allen, J. Böttcher, H. Hàn, Y. Kohayakawa, and Y. Person, Blow-up lemmas for sparse graphs, arXiv:1612.00622

(2016).

2. N. Alon, M. Krivelevich, and B. Sudakov, Embedding nearly-spanning bounded degree trees, Combinatorica. 27
(2007), 629–644.

3. J. Balogh, B. Csaba, M. Pei, and W. Samotij, Large bounded degree trees in expanding graphs, Electron. J. Combin.

17 (2010), R6.

4. J. Balogh, A. Treglown, and A.Z. Wagner, Tilings in randomly perturbed dense graphs, Combin. Probab. Comput.

(2018), 1–18.

5. W. Bedenknecht, J. Han, Y. Kohayakawa, and G.O. Mota, Powers of tight Hamilton cycles in random perturbed
hypergraphs, arXiv:1802.08900 (2018).

6. P. Bennett, A. Dudek, and A.M. Frieze, Adding random edges to create the square of a Hamilton cycle,

arXiv:1710.02716 (2017).

7. T. Bohman, A. Frieze, and R. Martin, How many random edges make a dense graph Hamiltonian?, Random

Structures Algorithms. 22 (2003), 33–42.

8. B. Bollobás and A.G. Thomason, Threshold functions, Combinatorica. 7 (1987), 35–38.

9. J. Böttcher, R.H. Montgomery, O. Parczyk, and Y. Person, Embedding spanning bounded degree graphs in randomly
perturbed graphs, arXiv:1802.04603 (2018).

10. G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. 3 (1952), 69–81.



BÖTTCHER ET AL. 11

11. J. Han and Y. Zhao, Hamiltonicity in randomly perturbed hypergraphs, arXiv:1802.04586 (2018).

12. P. Haxell, Tree embeddings, J. Graph Theory. 36 (2001), 121–130.
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