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Abstract

This paper estimates the impact of a multi-billion pound investment in
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are based on a dynamic spatial panel model adaptation of standard urban
economics based on employment density and commuting patterns. This al-
lows estimation of these global impacts operating via improved commuting
times. We demonstrate that while estimates of a traditional market potential
approach with fixed effects are to some extent qualitatively and quantita-
tively similar to our predictions, our predictions allow more heterogeneous
effects and give more accurate forecasts. The study finds that on average
wages increase by around 2% as employment centres gain improved access to
more skilled workers and as spillover effects become spatially more extensive.
While most areas see modest positive effects, some locations are negatively
affected, in the extreme case by as much as 7%.
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1 Introduction

As transportation plays an important role in determining the spatial distri-
bution and productivity of economic activity, transportation innovations are
a popular policy instrument for stimulating overall economic growth and re-
ducing economic disparities across regions (Redding and Turner 2015). This
is true for developed and developing countries alike as increasing spatial dif-
ferences in economic performance are a universal concern. The impact of
intra- and cross-region transportation improvements is a popular topic of
research but most studies focus on particular investment projects and spe-
cific regions which makes their results diffi cult to generalize. There is also a
tendency for new infrastructure to be targeted at connecting places that are
already growing so identifying the contribution of transportation infrastruc-
ture is diffi cult. This paper develops a spatial model of wages that allows
for spillovers of transportation innovations between locations and quantifies
the impact of improving travel times. By focusing on improvements in travel
times rather than on direct access to new infrastructure we can address the se-
lection bias of locations that receive transportation investment. We allow for
travel innovations to affect locations that do not receive new transportation
infrastructure through improvements in indirect travel times and through
spatial interactions of wages within a commutable area. We estimate the
model using a dynamic spatial panel estimator as suggested by Baltagi et
al. (2014, 2018) which allows us to simulate the spatial distribution of the
impact of changes in travel times induced by transportation investment. In
an attempt to avoid ad hoc assumptions and purely data-driven decisions,
the model specification is based on a well-established urban economics theory
and includes temporal and spatial lags which have a priori rationale as well
as empirical support. This differentiates our approach from simpler meth-
ods used in the literature and we demonstrate the advantage of using our
model by contrasting it with a simpler model. Our choice of a spatial mov-
ing average error process attempts to mitigate possible deleterious effects for
estimation of lagged exogenous variables, and in our instrumentation strat-
egy we seek to eliminate bias due to possible endogeneity. Likewise we opt for
minimalist assumptions regarding the extent of spatial effects, thus allowing
free choice within a commutable zone, rather than impose rigid assumptions
embodied within one or other specific distance decay function. This is in
the spirit of Simini et al(2012). An important feature of our forecasting ap-
proach is the focus on finding a dynamically stable, stationary prediction.
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Unlike traditional approaches, we acknowledge that without satisfying the
maximum absolute real eigenvalue criterion there is no long-run elasticity,
and apply this restriction to our forecasts.
The specific context we study is the impact of transportation innovations

on wages according to urban and regional economic models. The problem of
inter-regional studies of wages is that most existing urban economic models
are based on US cities in which commuting across urban areas has not been
a prominent feature. In many other countries, however, commuting is a key
determinant of local productivity (Fingleton 2003), which makes transporta-
tion innovations an important issue for local economic growth. Thus our
model is built on the standard microfoundations but it allows for commuting
between regions so that firms compete for the most productive workers while
workers can choose between locations that make them most productive (and
pay the highest wages). For example, one key issue of transportation inno-
vation is the spatial distribution of the impact of connecting a large, dense
and prosperous area with a less developed location (Chandra and Thompson
2000). The model used in this study allows interactions between wages and
location-fixed effects to change with travel time which controls for the im-
pact of being connected to a location with specific (observed or unobserved)
characteristics. Indeed, using a realized project we compare our forecasts
with estimates of a traditional market potential approach with fixed effects
and show that while they are to some extent qualitatively and quantitatively
similar, our model offers more heterogeneous effects and a better fit of actual
post-improvement data.
As transportation technologies are undergoing large-scale changes, the

question of their impact on the spatial distribution of economic activity re-
mains open. The mainstream economic research focuses on the impact high
speed rail has on access to the surrounding economic mass and shows that
reducing transportation costs to new locations has positive economic conse-
quences (Redding and Strum 2008). Although there is a large body of eco-
nomic literature that considers the impact of transportation costs on trade
(Duranton et al 2014, Redding and Turner 2015), relatively little is known
about the impact of the movement of people on wages. While in a recent
study Ahlfeldt and Feddersen (2018) consider the impact of high speed rail
on agglomeration economies of both directly connected locations and their
neighbours, we contribute to this literature by showing that the impact of
high speed rail is not limited to locations where stations are located and
their neighbours, but affects all districts. We also have a more narrow focus
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and concentrate on the impact on wages rather than GDP. Concentrating on
wages allows us to measure the benefits of high speed rail improvements at-
tributable to gaining access to new workers. We develop a theoretical model
of how wages change due to improvements in inter-district rail connections
and link this effect directly to commuting. Small et al. (2007) estimate that
the commuting time is around 7.5% of an average working day in most de-
veloped countries and Schafer (2000) estimates the average commuting time
across 26 countries to be 73min (with a standard deviation of 12min). Ag-
gregated, these numbers add up to a time cost of commuting of between 2.4
and 4.8% of GDP (although other methodologies suggest that this is a con-
servative estimate (Redding and Turner, 2015). It is, however, unclear how
transportation technologies influence the impact of commuting on wages. For
example workers with higher pay have longer commutes and it is unclear if
this is because more productive workers are willing to travel more or be-
cause the most productive locations require the longest commutes (Schafer
2000). Critically, there is a positive correlation between the level of devel-
opment of transportation infrastructure and average commuting distances
(Redding and Turner 2015). This suggests that transportation innovations
do not affect the time workers are willing to spend commuting but, as they
are able to travel further within the same time, they affect the spatial distri-
bution of where people live and work. These however are notoriously diffi cult
to capture in traditional empirical models based on cross-sectional data as
those choices and transportation improvements are highly endogenous. Re-
searchers attempt to address this problem in different ways. For example, by
instrumenting current transportation links with historical networks (Duran-
ton and Turner 2012) or by using locations where a development was planned
but abandoned as control groups (Baum-Snow 2007).
Our primary contribution is to overcome some of the empirical challenges

by applying novel spatial econometric methods. The dynamic spatial panel
estimator proposed by Baltagi et al. (2018) allows us to control for endogene-
ity in our spatial model. This includes all location sorting decisions of firms
and workers who react to changes in wages and house prices within a com-
mutable distance of their workplace. It also accounts for decisions of firms to
change wages in response to competition in the labour market and changes in
local productivity. The model assumes that workers can choose locations of
work and residence freely as long as they are within a commutable distance
from each other. We define this distance using travel time and show that the
optimal upper limit is 85min. The impact of transportation innovations is
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captured by allowing new locations to be added to the commutable area. All
unobservable factors are treated as spatially dependent random effects which
allows us to capture location-fixed effects and local shocks. We estimate
the model on Local Authority Districts in England and Wales using annual
data from 2008 to 2017. Our forecast of changes in travel times is based
on a£ 56bn1 rail improvement project planned by the UK government. In a
one-step-ahead prediction we show that our results are accurate in predict-
ing the spatial distribution of wages. We also test the model using historic
improvements to England’s rail network and show that wages forecasted by
the model have a 0.9 correlation with actual wages. This shows that the
model can be used not only to forecast the impact of planned developments
but also to assess the impact of already completed projects.
Our results show that the planned improvement to the railway network

will in the long run increase wages by an average of around 2%. However, the
benefit is very uneven across space. Locations that will see the largest number
of other areas enter into their 85min travel time radius will see the biggest
benefit. Conversely, districts that are already relatively well-connected with
the rest of the country do not see their wages changed. We also report that
the majority of the increase in wages will not occur in locations that will
have direct access to the new network as those are already relatively well-
connected. Instead, their neighbours will be able to benefit from decreased
indirect travel times.
The reminder of the paper is structured as follows. Section 2 develops the

model. Section 3 outlines our data. Section 4 presents a preliminary analysis
of our sample. Section 5 describes the estimator and section 6 presents
estimation results. Our prediction methodology is described in section 7
and simulation outcomes are presented in section 8. Section 9 concludes by
presenting final remarks

2 The Model

The model specification is based on the urban economics model outlined in
the Appendix, but we extend this in two ways. First, we introduce time

1This is the offi cial total cost for HS2, as set out in the Government’s 2015 spending
review. The actual cost may be different.

5



as indicated by the presence of t in equation (1). Second, we introduce the
concept of labour effi ciency units in place of the number of workers E given in
the model (26). Thus Nt in equation (1) is the number of effi ciency units at
time t, which we define as the number of workers (Et) per unit area multiplied
by the level of technology they employ (At) at time t. Accordingly

lnwt = lnϕ+ (γ − 1) lnNt (1)

in which lnwt is an n by 1 vector the log of the wage rate at time t, in
which n denotes the number of districts, Nt = EtAt, ϕ is a constant and γ
a parameter with value dependent on the presence or absence of increasing
returns. So if γ > 1, wages are increasing in the density of labour effi ciency
units, due to positive externalities associated with high density. If γ < 1,
then negative externalities such as the effects of ‘congestion’, implicit in the
labour effi ciency units per unit area metric, offset positive externalities so
that the net effect is diminishing returns.
Consequently,

lnwt = lnϕ+ (γ − 1) lnAt + (γ − 1) lnEt (2)

Also assume that
lnAt = ln b0 + b1 lnHt (3)

Equation(3) indicates that lnAit depends on the skills of workers in and
around district i, Hit. We use the fact that each location has a unique
network of social and economic connections with its commutable area which
is reflected in the local and regional intensity and direction of commuting
flows as well as in the spatial distribution of employment and population
density. Since workers are perfectly mobile within a given commuting radius,
they choose where to work and live purely by what maximizes their utility.
As a consequence, household location and commuting choices are driven by
arbitrage in local labour and housing markets. We therefore assume that
the n by 1 vector lnAt depends on the number of people within commuting
distance that have higher education, Ht. In order to calculate this number,
for each district i with hit residents with higher education we calculate the
total residents with higher education living within 85minutes2 commute time
of district i, including those living within district i, thus Ht =DNht where
DN is an n by n matrix of 1s and zeros. In this, 1 indicates that a pair of

2This commute time is subsequently supported by empirical analysis.
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districts are within 85 minutes commuting time from each other, and zero
indicates that they are not (including 1s on the leading diagonal).
The effect of employment density in district i on wages in district i re-

flects externalities, emanating from the variety of services and the level of
congestion3.
Combining this with equations(2) and (3) gives

lnwt = ln(ϕb0) + (γ − 1) lnEt + (γ − 1) b1 lnHt (4)

However equation(4) ignores other important factors which also likely to
influence lnwt,notably the effects of lnwt−1,WN lnwt−1 and WN lnwt, in
other words the effects of wages in the previous period, both within district
and within commuting distance, and contemporaneous effect of wage levels
within commuting distance. These across-district interactions are governed
by the matrix4 WN .
We assume that WN is based the n by n matrix DN of 1s and zeros, but

with zeros on the leading diagonal. The resulting matrix is subsequently row
normalized so that districts within 85minutes of district i each have the same
weight in the weighted average, to give WN . We maintain the usual assump-
tions for a weights matrix, that it comprises fixed (non-stochastic) values
and its row and column sums are uniformly bounded in absolute value, and
maintain the same assumption for B−1N = (IN − ρWN)−1 (Elhorst, 2014, p.
99) in which IN is an n by n identity matrix. Given estimation of parame-
ter ρ in BN = (IN − ρWN) (see equation (11)), a standard restriction found
in the literature is that e−1min < ρ < e−1max where e is the vector of purely
real characteristic roots of WN , and because of row-normalization, emax = 1,

3Note that we explicitly separate the impact of local density from the skills of locally
employed workers. In this way our definition of density is different from elsewhere in the
literature and needs to be interpreted in this context.

4Typically, one could moderate the spatial weighting matrix so that the commuting
‘distance’around Manchester was less than London, but while distance may vary, per-
haps because of infrastructure differences, it seems more likely that the upper bound of
commuting time will be approximately the same. This could reflect physical and social
limitations on regular commuting longer than 85 minutes each way, regardless of distance,
for most people. Notwithstanding, what is important is the outcome, wages and how they
evolve in the future. We have in the model individual effects µi, i = 1, ..., n, which are
unobserved individual (district) specific effects also affecting wages. These capture inter-
district heterogeneity, for example a proclivity to commute further in one region rather
another. These are spatially dependent according to an SMA process, so that groups of
nearby districts will have similar values.
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which avoids the singularity and ensures the inversion of BN . However, the
conditions needed to avoid non-stationarity are more complex in the dynamic
spatial panel context, as discussed in more detail below.
Typically throughout much of the spatial econometrics literature, spatial

and temporal dependence involving the spatial lagsWN lnwt andWN lnwt−1
and the temporal lag lnwt−1 are ad hoc assumptions justified by empirical
evidence. However, following the same arguments given by Baltagi et al.
(2018), here we justify their inclusion by arguing that they are the logical
outcome of assuming that, in theory, the distribution of wages tends towards
an equilibrium. In other words, the contrast between local wages in district
i and wages in its commutable area tends not to change over time because
rigidities in the labour market cause unchanging demand for and supply
of labour in each district unless disturbed by some outside force, such as
infrastructral investment in transport systems causing an extension of the
feasible commuting zone. We express this theoretical equilibrium as the
difference between log wage and the average log wage within commutable
distance remaining constant, so that

lnwt −WN lnwt = lnwt−1 −WN lnwt−1 (5)

obviously holds with long run equilibrium such that lnwt = lnwt−1.However
typically with real data we do not observe the long-run equilibrium, but a
tendency for data to move towards equilibrium, we assume according to an
autoregressive process

lnwt = τ lnwt−1 + ς (6)

where scalar |τ | < 1.The assumption underpinning the long-run equilib-
rium is that if the process is undisturbed in the long run the vector of log
wages reaches the equilibrium lnwT = ς

1−τ .Without loss of generality we
introduce a scalar parameter ρ,and multiplying (6) by ρWN , it follows that

ρWN lnwt = τρWN lnwt−1 + ρWN ς

Subtracting ρWN lnwt from lnwt gives

(IN − ρWN) lnwt = (τIN − ρτWN) lnwt−1 + (IN − ρWN) ς

hence
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lnwt = B−1N (CN lnwt−1 +BN ς) (7)

in which in which CN = (τIN + θWN) and θ = −ρτ .Rearranging, and
introducing other time-varying effects so that BN ς t = πt+εt in which πt rep-
resents the other observable effects identified in equation (4) and εt denotes
unobservable effects, gives the more empirically sustainable expression

lnwt = τ lnwt−1 + θWN lnwt−1 + ρWN lnwt + πt + εt (8)

Expanding this by substituting equation(4) plus lnwt into (8) gives

lnwt = τ lnwt−1 + θWN lnwt−1 + ρWN lnwt + (9)

ln(ϕb0) + (γ − 1) lnEt + (γ − 1) b1 lnHt + b2 lnwt + εt

lnwt = (IN − ρWN)−1 (τ lnwt−1 + θWN lnwt−1 + ...) (10)

lnwt = B−1N

[
CN lnwt−1 + ln(ϕb0) + (γ − 1) lnEt

+ (γ − 1) b1 lnHt + b2 lnwt + εt

]
(11)

The additional variable lnwt denotes the log of district-invariant mean
wages, which captures the common effect of wage shocks across all districts,
which is similar to the approach involving interest rates and share prices
adopted in Fingleton, Fuerst and Szumilo (2018). Typically without con-
trolling for the presence of common factors, the parameter ρ will tend to be
biased upwards. In order to solve equation (11), and ensure that the system
tends towards an equilibrium rather than explosive outcome, constraints are
imposed on ρ, τ and θ. Hence, following Elhorst (2001,2014, p. 98), Parent
and LeSage (2011, p. 478, 2012, p. 731) and Debarsy, Ertur and LeSage
(2012, p. 162), we require that the largest characteristic root of B−1N CN is
less than 1. This restriction maintains stationarity, dynamic stability and
ensures convergence in wages to equilibrium levels5.
The unobservables εt are treated as spatially dependent random effects so

that, for simplicity of exposition, equation (11) becomes equation(12), with

5Figure 8 is an example of the dynamic evolution of wage levels given that the restriction
is satisfied. Holding constant variables and parameters in prediction equation (21), the
individual path for wages in each district is shown to converge to its own steady-state level.
Figure 9 shows a typical outcome when the restriction is not satisfied. In this case future
levels do not reach a steady state equilibrium, although the paths take by each district
can be complex, depending on the estimated parameters.
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x0t an n by 1 vector of ones, x1t = lnEt, x2t = lnHt, x3t = lnwt, xt =
[x0t x1t x2t x3t] and β = [ β0 β1 β2 β3] ,hence

lnwt = B−1N [CN lnwt−1 + xtβ + εt] (12)

in which
εt = ut − λMNut = GNut (13)

where GN = (IN − λMN) ,and ut = µ + νt.Thus we have a compound
spatial moving average (SMA) error process, building on Fingleton(2008), in
which µ ∼ iid(0, σ2µ) is an unobservable time-invariant effect which accounts
for heterogeneity across districts, and νt ∼ iid(0, σ2ν) is a remainder term.
The essential characteristic of a moving average error process is that the
unobservable elements have local rather than global interdependence, unlike
an autoregressive process.
As explained by Fingleton, Le Gallo and Pirotte(2017), one justification

for an SMA error specification is that ‘it mitigates against the problem for
instrumental variable estimation identified by Pace et al. (2012)’. In (cross-
sectional) estimation involving two-stage least squares (2SLS), Kelejian and
Prucha (1998, 1999) recommend that the instruments should comprise the
‘exogenous’variables (X) and their spatial lags (WNX), keeping the instru-
ment set to a low order to avoid linear dependence and to retain full column
rank for the matrix of instruments. In practice, as we explain in Section 6,
we treat the variables X as predetermined, thus requiring temporal lags of
the instruments X and WNX to satisfy moments conditions. Nonetheless,
by includingWNX among the set of explanatory variables, one could jeopar-
dize the performance of the estimation procedure, as explained by Pace et al.
(2012). Given that the spatial lags (WNX) are among the set of regressors,
then this requires the use of (W 2

NX,W
3
NX, . . .) as instruments, and these

additional instruments could lead to a weak instrument problem. To avoid
this, we adopt SMA errors as an alternative way to capture local spillovers
which would otherwise be captured by incorporating spatial lags of the ex-
planatory variables. In equation (13), we assume that MN = WN , restrict
λ to its stationary bounds e−1min < λ < e−1max , and assume that the elements
of x are uniformly bounded in absolute value.

3 Data
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Our data come mainly from databases provided by the UKOffi ce for National
Statistics (ONS). Education data comes from the Annual Population Survey
which is based on approximately 320,000 respondents and is the largest sur-
vey of households in the UK. In our dataset, to reflect education levels, the
variable Ht is measured by the number of residents with NVQ level 4 or
above qualifications. As defined by the ONS these usually are Degree and
Higher Degree level qualifications or equivalent. This data set is based on
the place of residence and persons are regarded as residents if they have lived
at their current address for more than 6 months. Students are recorded as
living with their parents. Employment data (Ẽt) comes from the same source
but is based on the place of work and full time male and female employees
only, leading to Et which is employment per hectare (ha) across all sectors.
Wages wt are gross mean weekly wages in £ sterling for full-time male

and female employees, whose earnings for the survey period were not af-
fected by absence. The data is taken from the Annual Survey of Hours and
Earnings which is based on a 1% sample of employee jobs provided by the
HM Revenue and Customs (HMRC) for the Pay As You Earn (PAYE) tax
system. These are adjusted for inflation using the Consumer Price Inflation

time series dataset (2015 = 100) available from the UK’s Offi ce of National
Statistics.

Table 1 : Descriptive statistics for key variables, t = 2016

Ht Ẽt ha Et wt
mean 39497.7 47302.6 43515 9.36328 591.6
median 29000 34000 23349.2 1.52613 573.4
st.dev. 31932.3 48252.5 62396.6 70.3935 87.63
min 5500 5000 289.78 0.0501895 446.4
max 230400 479000 518037 1280.28 1160.6

Note : Ht = number of residents with NVQ level 4 or above qualifications;Ẽt =

employment level; ha = hectares;Et = employment per hectare;wt = gross mean
weekly wages in £ sterling for full-time male and female employees.
Data for the estimation sample are collected for all 347 (n) Local Au-

thority Districts in England and Wales (Isles of Scilly are excluded due to
data limitations) on an annual basis starting in 2008 which is the earliest
year for which data for these geographies is available. Thus data cover the
period 2008 to 2017. Travel times and distances between areas are calculated
for population centroids provided by the ONS. We use the quickest of drive
times and public transportation as an indication of travel times between ar-
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eas, calculated using Google maps. In our simulations we use the forecast of
travel times after transportation improvements (HS2) given by the UK gov-
ernment’s projections of direct improvements in travel times. If an indirect
route between any two locations becomes faster than a direct connection the
shorter of the two is used in our calculations. Historic travel times used for
measuring the impact of realised improvements of the rail network (i.e. HS1)
are approximated since this information is not available from Google maps
and fastest indirect travel times cannot be calculated easily from current
travel times. The approximation is based on simulating the impact the re-
alised improvement in direct travel times would have on current connections
(if it was implemented again) and slowing the affected routes down by the
time they would gain from this hypothetical development.
In this study we show how the impact of transportation innovations can

be estimated using the example of the HS2 (High Speed 2), which is a pro-
gram of railway improvements planned by the UK government. The project
is expected to cost £ 56bn and take 16 years to complete. The development is
based on linking 4 major cities (see Figure 2) with a high-speed rail connec-
tions with additional cities being linked to the network over existing tracks.
In our projections we use the forecast of travel times provided by the UK
government (HS2 2013). This data lists changes in travel times between sta-
tions linked to HS2 directly and stations that will be connected via existing
railways. We also allow for indirect travel and if an indirect route between
any two locations becomes faster than a direct connection, the shorter of the
two is used in our projections.
For the evaluation of a realised transportation project we use HS1 which

is a high speed railway connection between London and the Channel Tunnel
with three intermediate stations (see Figure 2). The project cost £ 5.8bn and
has been completed in November 2007. Data used to apply our forecasting
approach comes from the same sources as for the estimation sample although
several districts changed their geographical boundaries in 2008 which makes
data before this date inappropriate for spatial estimations. Note that the
change has little effect on our forecasts of the impact of HS1 as there were
no significant changes in the region affected by it.
Importantly, in our model improvements in travel times do not affect

commuting patterns unless the change means that a destination that used
to be out of reach becomes accessible. In 2016 the National Travel Sur-
vey reported the average commuting distance to be 10.9 miles and take 30
minutes. However, there is significant regional variation between commuting
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times across different regions as London workers choose the longest com-
mutes (42min), while the average for the South West is 25min. Although
no data on standard deviation of these estimates is available, other reports
show that only around 25% of commuters spent more than 30min traveling
to work (McQuaid and Chen 2012) and around 4% reported commuting for
longer than 60min (Chatzitheochari and Arber 2009). According to the 2011
census the 85min limit captures 95.14% of cross-district commuting popu-
lation. This is shown by Figure 1, which gives the cumulative percentage
of total cross-district commuting population captured by different (between
districts) travel time limits. As shown in Figure 1 the 85min limit captures
the majority of commuters but very few additional workers are captured by
increasing this threshold. The marginal share of population captured by ex-
tending the threshold by an additional 5min from 70min and 80min is 0.73%
and 0.71% respectively. Increasing the limit by 5min from 85min or 90min
adds only 0.32% or 0.42% of extra commuters. This shows that the 85min
limit is a point at which the marginal share of commuters captured by ex-
tending the travel limit falls substantially. Later we show that in our data
the optimal assumption of the maximum commuting time is 85min. There-
fore, we consider the benefit of transportation improvements to be measured
by the number of districts that become accessible within 85min.
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Figure 1 : Cumulative percentage of total cross-district commuting
population by travel time.

Note : 0 to 10 min commute time identifies the approximate percentage of the
population that works within their district of residence.
Figure 2 gives, for each district, the additional number of districts within

commuting distance (85min travel time) in England and Wales after HS1
(Figure 2a) and HS2 (Figure 2b) are completed. As we show subsequently,
the HS1 effect is relatively localised in the South and East of England. HS2
will impact some cities directly (for example Birmingham and London) but
will have the biggest impact on travel times at locations that will not be linked
to the network directly. This means that indirect train travel from remote
areas will become much faster. This is consistent with the government’s
assumption that the key advantage of HS2 over the existing network will be
its ability to connect into the existing railway connections. This effect is
most noticeable for the North of England. HS2 will result in large nominal
time savings for travellers in that region as their current journeys to other
districts are very long.
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the impact of employment density on wages is more nuanced than suggested
by this preliminary analysis. As explained by Combes and Gobillon (2015),
an endogeneity problem might occur at local level when the density variable
is correlated to the error term either due to reverse causality or an omitted
variable. When higher wages attract more workers, the reverse causality ef-
fect would cause the OLS estimate to be positively biased. Omitted variable
bias can be a result of a factor that influences both wages and density such
as local amenities. Amenities that increase productivity and attract new
workers simultaneously (such as transport infrastructure) also introduces a
positive bias into the OLS estimate of the impact of density while consump-
tion amenities have the opposite effect. It is also possible that there is a bias
introduced by worker heterogeneity and their preference for certain locations
or types of work. Finally, there may be a bias resulting from the interaction
of area heterogeneity with worker heterogeneity when the same worker would
receive a different wage in different locations due to a factor that is correlated
with density (Combes et al. 2011).
The relevance of location for wages is apparent from Figure 4. As the

mean commuting time from a district to other districts increases, wages fall.
We attempt to capture this via WN as in equation(11).
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Figure 3 : Employment density versus wages
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Note: ln ŵt =6.3582+0.0469 lnEt, slope t− ratio = 11.94. R2 = 0.2925
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Figure 4 : Mean travel times (T ) versus wages

Note : ln ŵt = 6.6413− 0.0015T, slope t− ratio = −7.98. R2 = 0.1560

4.1 Simpler rivals to the preferred specification

Instinctively one would hope that the model specification is as simple as
possible. In this section we present an (over)simplified version of a standard
approach to predicting the impact of transportation innovations. The first
step is to estimate the impact of being ‘treated’with new infrastructure on
wages in the treated district and use the estimated value to predict the effect
of future treatments. We therefore begin by estimating the impact of HS1
on wages in districts it affected. There is a large body of literature that
focuses on estimating the impact of new transportation connections and it
offers a variety of different methodologies attempting to recover the impact of
being treated with new transport connections on different outcomes. Gibbons
and Machin (2005) employ a simple difference in difference methodology in
which having access to new infrastructure is a binominal dummy variable.
Ahlfeldt and Feddersen (2017) offer a market potential approach in which
the impact of new infrastructure is measured by the change it induces in the
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market potential variable. However, few papers examine wages explicitly and
while it may be tempting to apply methodologies used for other outcomes to
examine wages, this strategy has several shortcomings.
To demonstrate this point, we follow a very basic approach to estimating

treatment effects and add an additional variable to equation (4) to reflect its
exposure to HS1. For each district, the variable reflects the number of new
districts that enter its 85min commuting radius due to travel time improve-
ments. It equals zero for years in which HS1 was not operating. This can
be interpreted as a treatment variable with a measure of intensity or as a
measure of changes in market potential (measured in the number of districts
within the commuting distance). To focus on the immediate effect of the im-
provement, we limit our sample to the years 2006, 2007 and 2008, that is just
one year after HS1 opens. This is partially due to the fact that we expect that
the effect on the treated will vary over time (Ahlfeldt and Feddersen 2017)
and partially because we expect that over time the directly affected districts
(treated) will interact with their neighbours (non-treated) which means that
the treatment effect spills over space and is diffi cult to estimate over time
(Combes et al. 2008). In a fixed-effects panel estimation (with both district
and year effects) clustering standard errors at district level6 we find that the
average impact of adding a new district on wages is an increase of 0.27%
(standard deviation is 0.11%). Figure 5a demonstrates the spatial impact
of HS1 estimated using this approach. Using this simple treatment effect
parameter also facilitates our first attempt at predicting the impact of HS2,
by multiplying it by the number of districts expected to be newly connected.
In Figure 5b we see that the effect of HS1 was to increase wages by up to
3.10%, with the impact concentrated in the South East region of England7.
The average across all affected districts is just 0.69%. The predicted impact
of HS2 is more widespread and locally much more intense with the average
impact on the treated districts of 1.78% but the highest increase of 19.5%8.

6Meaning that they are robust to
cross-sectional heteroskedasticity and within-district serial correlation.
7More precisely we work with the South East region (minus the New Forest and Isle

of Wight districts) plus Cambridgeshire (minus Peterborough) and the county of Suffolk.
Overall that gives 137 districts.

8Since HS1 affects a far smaller number of districts than HS2 the two frequency distri-
butions 5b and 6b have different scales.
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Figure 5a : The estimated
impact of HS1

Figure 5b : Key to Figure
5a.

Figure 5 : The estimated impact of HS1 on wages using the simple model
Note : 5a maps the estimated % wage shortfall in each district had HS1 not

occurred. Darker shading indicates bigger HS1 effect as demonstrated in 5b which
represents the same data as a histogram.

Figure 6a : The estimated
impact of HS2

Figure 6b : Key to Figure
6a.

Figure 6 : The estimated impact of HS2 on wages using the simple model
Note : 6a maps the estimated % wage shortfall in each district without HS2.

Darker shading indicates bigger HS2 effect as demonstrated in 6b which represents
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the same data as a histogram.

Clearly, while the actual impact of HS1 and the predicted impact of HS2
are plausible, this estimation approach is amongst the simplest possible and
falls short of the preferred estimator of Section 5. There a numerous al-
ternative methods of estimating the treatment effect, but these too have
limitations. Two common variations would be to use another definition of
being ‘treated’ or chose a different measure of market potential. For ex-
ample, one might replace the number of new districts with the percentage
change in the number of accessible districts or (in the context of our theoret-
ical model) with the number of new workers with higher education in those
new districts. This choice is usually motivated by the theoretical model ad-
vocated in the specific context and although it clearly affects the obtained
magnitude of the treatment effect and its functional form, we do not focus
on this aspect as a major limitation. Instead, we argue that most similar
measures of treatment effects will have several common shortcomings. First,
the treatment effect is only measured in directly affected districts. Since
neighbouring regions are economically dependent on each other, an increase
in wages in one will affect the other (Combes et al. 2008). Regardless of
which market potential change variables are used, the standard treatment
effect approach ignores this relationship and provides a biased estimate. Our
preferred estimator allows wages of neighbouring regions to interact so our
results will be a combination of the treatment effect with the spatial spill
over effect. The second shortcoming of using a simple treatment effects ap-
proach is that it only allows positive or negative treatment effects while it
is possible that new transportation infrastructure could have a positive im-
pact on some (for example on the directly connected districts) but a negative
impact on others (for example on the neighbours of the directly connected
districts). Our preferred estimator allows for positive and negative as well
as direct and indirect effects of transport innovations. Note that the spatial
spill over is especially problematic when the neighbours are used as the con-
trol. This leads to the last issue we highlight in this section; endogeneity of
being treated. Since transportation innovations usually target specific loca-
tions, it is diffi cult to argue that the treatment is orthogonal to the outcome
and most papers recognize that this is a considerable limitation. A natural
solution to this problem would be to turn to instrumental variables but it is
very diffi cult to find reliable instruments. We avoid the tricky problem of the
appropriate choice of instruments in our preferred dynamic specification and
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estimator, which is fully consistent with the dynamic theory and in which
internal instruments are applied, in the spirit of Arellano and Bond (1991).

5 The Preferred Estimator

Pesaran(2015, Chapters 29 and 30) and Baltagi(2013, Chapter 13) provide
comprehensive overviews of spatial panel econometrics highlighting the grow-
ing importance of this methodology for the applied econometrician. Our
estimator, introduced by Baltagi et al(2018), which corresponds exactly to
the specification of equations (12) and (13), is a new addition to the avail-
able methodology. The precursor to the estimator, as detailed in Baltagi
et al. (2014), extends Arellano and Bond (1991) by introducing additional
moments to take full account of the spatial dimension of the model (see also
Bouayad-Agha and Védrine, 2010). However Baltagi et. al.(2018) introduce
the spatial lag of the temporal lag of the dependent variable WN lnwt−1 as
an additional regressor, and allow moving average rather than spatial au-
toregressive compound error dependence. Because it is fully described in
Baltagi et al(2018), we simply set out the broad structure of the method.
The general (static) IV based methodology, which we can refer to as the
GM spatial IV estimator, as described by Kelejian and Prucha(1999) and
Kapoor et al(2007) and also discussed in a moving average panel data context
in Fingleton(2008), has some computational advantages compared with ML
estimation. These advantages relate to the robustness of the approach to dis-
tributional assumptions, compared with explicit distributional assumptions
required under ML (although these issues may be resolved somewhat under
quasi-ML), and to less strict assumptions regarding initial conditions (Bond,
2002, Hsiao,1986). Also the proposed approach is computationally feasible
even with very large data sets. Additionally a major advantage is the way in
which the IV approach can cater for endogeneity in its implicit form, which
is not possible under ML. Thus we can include endogenous or predetermined
right hand side variables additional to those involving the endogenous left
hand side variable, namely lnwt−1,WN lnwt−1and WN lnwt.
In summary, the approach involves a four-stage parameter estimation

procedure. Stage one is an initial step in which instrumental variables are
used to obtain initial estimates of τ , ρ, θ, β1, β2,and β3, from differenced
data to eliminate the correlation between the individual effects µ and the
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lagged dependent variable, which are then used to give estimated errors.
The second stage involves using these estimated errors to obtain estimates
of the parameters of the spatial moving average error process, namely λ, σ2µ
and σ2ν using moments equations given in Fingleton(2008). The third stage
involves computing preliminary one-stage consistent spatial GM estimates.
The fourth introduces a robust version of the variance-covariance matrix to
give the two-stage Spatial GM estimates of τ , ρ, θ and the βs.
Typically in many applications the regressors (x1, x2, x3) are assumed to

be exogenous. These then become part of the instrument set facilitating
consistent estimation. Among the instrument set one also typically includes
the dependent variable lagged by two periods, and we also include its spatial
lag lagged by two periods. Assuming νit is serially uncorrelated and hence
E(∆νit,∆νit−2) = 0, the moments equations will be satisfied. Arellano and
Bond(1991) give a test (m2 = cov(∆νit,∆νit−2)/s.e.) for this assumption but
evidently m2 is only defined for series of at least length five and inference
rests on a proof of asymptotic normality. Here we utilize the somewhat
complex equations given by Arellano and Bond(1991) (see also the Stata
manual), which are omitted to save space, to test for serial correlation. The
outcome, based on differenced errors following stage one of the estimation
procedure, is m2 = 0.0526, which is not significant when referred to the
N(0, 1) distribution, with upper tail probability equal to 0.3985. The method
clearly indicate that there is no evidence of second order serial correlation9.
Consequently, following Baltagi et al(2007), with E here denoting the

expectation, we have

E (lnwil∆νit) = 0 ∀i, l = 1, 2, ..., T − 2; t = 3, 4, ...T

E(
∑
i 6=j

wij lnwil∆νit) = 0 ∀i, l = 1, 2, ..., T − 2; t = 3, 4, ...T

leading to matrices of instruments

Zt =

(
lnw1, ..., lnwt−2,WN lnw1, ...,WN lnwt−2, x11, ..., x1T ,
x21, ..., x2T , ....,WNx11, ...,WNx1T ,WNx21, ...,WNx2T , ...

)
9Also we find that, using a randomization approach to obtain the empirical null distri-

bution of cov(∆νit,∆νit−2),the observed covariance 0.0526 is exceeded by 38.4% of 1000
randomly generated covariances. Plotting ∆νit against ∆νit−2 gives a random scatter
with no obvious trend, supporting the inference of no second order serial correlation.
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for t = 3, ..., T.The important point here is that since the regressors are
exogenous, they are completely independent of the differenced errors and so
at any time t the entire set from 1 to T can be included among the set of
instruments and the moments equations remain satisfied.
Note however that exogeneity may be unrealistic, since ‘strict exogeneity

rules out any feedback from current or past shocks to current values of the
variable, which is often not a natural restriction in the context of economic
models relating several jointly determined variables’(Bond 2002). This is
the case in this application, in which we wish to also take account of the
possibility that employment density and worker skill both cause and are also
responses to wage differences. One way to allow this is to treat all variables
symmetrically, by also lagging the regressors so that the instrument set for
individual i at time t becomes

Zt =

(
lnw1, ..., lnwt−2,WN lnw1, ...,WN lnwt−2, x11, ..., x1t−2,

x21, ..., x2t−2, ...,WNx11, ...,WNx1t−2,WNx21, ...,WNx2t−2, ...

)
However in the context of our study it seems unreasonable to assume

contemporaneous feedback from wages to the regressors. Instead we prefer
a time lag, and so our preferred estimator assumes that the regressors are
predetermined (see Bond, 2002, Pesaran, 2015). Predetermined regressors
are contemporaneously uncorrelated, so that corr(xt,νt) = 0, but do de-
pend on earlier shocks so that, for example, corr(xt,νt−1) 6= 0.This means
that an adjustment to lnw,which embodies ν, at time t does not have an
instantaneous effect on employment density and worker skill at time t but
takes effect at t + 1 and later. This allows an extension to the set of in-
struments compared with assuming endogeneity, enabling the inclusion of
x1t−1, x2t−1, x3t−1,WNx1t−1,WNx2t−1 and WNx3t−1 so that

Zt =


lnw1, ..., lnwt−2,WN lnw1, ...,WN lnwt−2,
x11, ...x1t−2, x1t−1, x21, ...x2t−2, x2t−1, ...,

WNx11, ...WNx1t−2,WNx1t−1,
WNx21, ...WNx2t−2,WNx2t−1, ...

 (14)

The Sargan-Hansen test of over-identifying restrictions gives a test sta-
tistic equal to 132.84. Evidently when referred to χ2198,this indicates that
the moments conditions implied by our dynamic spatial panel model with
predetermined regressors are valid. However caution should be exercised,
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partly because testing can be weakened by the presence of many moments
conditions (Bowsher, 2002, Pesaran, 2015), resulting in low power.

6 Estimates

In Table 2 we give the estimated parameters of our estimator with instrument
set given by equation(14) for t = 3, ..., T and WN based on a maximum
commute time of 85 minutes. In Section 6.2 we give the outcome of one-step
ahead prediction for different maximum commute times, which support the
choice of 85 minutes.

Table 2: Estimates of equation (12)
parameter parameter estimates st. error t ratio

τ 0.4650 0.03329 13.97
ρ 0.4798 0.1038 4.624

β1 = (γ − 1) −0.1331 0.02078 −6.408
β2 0.04808 0.02807 1.713
β3 0.5556 0.1121 4.957
θ −0.4942 0.08354 −5.916
λ −0.90683
σ2µ 0.05179

σ2ν 0.0018075
Note : τ parameter for lnwt−1 = temporally lagged log wage; ρ parameter for
WN lnwt = spatially lagged log wage; β1 = (γ − 1) parameter for lnEt = log

employment density; β2 parameter for lnHt = log qualified residents;
β3parameter for lnwt = log mean wage; θ parameter for WN lnwt−1 = spatially
temporally lagged log wage; λ = parameter for spatial dependence in moving
average error process; σ2µ = variance of unobserved time-invariant effect;

σ2ν =variance of unobserved remainder.

The Table 2 estimates are stationary and dynamically stable, as shown
by the largest characteristic root of AN = B−1N CN which is equal to 0.5582,
and the stationary bounds for λ are ẽ−1min = −2.4318 < λ < ẽ−1max = 1,where
given the SMA error process defined by equation(13), the negative value
of λ̂ implies positive spatial dependence among the errors. Accordingly
GN = (IN − λMN) is non-singular with rank equal to size and condition
number not excessively large. Thus we can invert GN as required in equation
(20).
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In contrast to the parameter estimates β̂1 and β̂2 given in Table 2, the
true derivatives, following Le Sage and Pace(2009) and Elhorst(2014, p.106)
among others, are, in the short run for lnEt, equal to ∂ lnw1t

∂ lnE1t
... ∂ lnw1t
∂ lnEnt

...
∂ lnwnt
∂ lnE1t

...∂ lnwnt
∂ lnEnt


t

= (BN)−1 (β1IN) (15)

and the long run derivatives for lnEt are

 ∂ lnw1t
∂ lnE1t

... ∂ lnw1t
∂ lnEnt

...
∂ lnwnt
∂ lnE1t

...∂ lnwnt
∂ lnEnt

 = [−CN +BN ]−1 (β1IN) (16)

Similarly, the corresponding short run derivatives for lnHt are[
∂ lnwt
∂ lnH1t

...
∂ lnwt
∂ lnHnt

]
t

= (BN)−1 (β2IN) (17)

and the long run derivatives for lnHt are[
∂ lnwt
∂ lnH1t

...
∂ lnwt
∂ lnHnt

]
= [−CN +BN ]−1 (β2IN) (18)

These n by n matrices of derivatives provide measures of the direct, in-
direct and total effects of a unit increase in lnE (respectively lnH). Thus,
the direct short run effect of a unit increase at time t is, following LeSage
and Pace(2009), equal to the mean of the leading diagonal of equation (15).
The total effect is equal to the mean column sum of (15) and the indirect
effect is equal to the total effect minus the direct effect. Likewise the long
run effects of a persistent increase in lnEt as t goes to infinity are based on
the identical means of the n by n matrix (16). Also, the direct, indirect and
total long and short run effects of a unit increase in lnH are given by the
same calculations starting from equations (17) and (18).
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Table 3 : Elasticities based on the Table 2 estimates
direct indirect total

Et(employment density) short run −0.1344 −0.1215 −0.2559
Et long run −0.2489 0.0065 −0.2423

Ht (qualified residents) short run 0.0486 0.0439 0.0924
Ht long run 0.0899 −0.0024 0.0875

Table 3 suggests the dominance of localised negative externalities (con-
gestion etc.) over positive local externalities, with regard to the effect of
Et on wages, leading to a total short run elasticity of −0.2559. This is for
a point in time increase in employment density in the local district. If the
increase in employment density persists ad infinitum, then in the long run
the total elasticity with respect to wages will converge to an equilibrium of
−0.2423, implying that a 1% increase in density causes output to increase
by only 0.76%, but as we show subsequently in Section 7.1, this amounts
to a long run prediction based on assumptions about future values of vari-
ables and coeffi cients that may not hold in the long run. Without denying
the probable existence of positive externalities relative to local density, it is
evident that our data has thrown up countervailing negative density effects
within districts, which we attribute to congestion, defined broadly as the lim-
itations on economic actors working in a confined space, and the net effect
of both is a negative elasticity. But while we estimate that the return to our
measure of density is negative, we have a narrow definition of this variable
that focuses on local effects. It also excludes any labour productivity effects
captured by number of qualified people within a given district. Looked at
more broadly, positive externalities with respect to labour come to the fore,
for it is undeniable that mass of economic activity outside the local district is
also important for wage levels within, and local economic activity per se is an
insuffi cient basis for understanding the impact of economic density or mass.
As local density increases, so does predicted wage. This comes through from
our analysis in which we identify a positive effect due to the total number of
qualified people (viz. workers) within commuting distance, denoted by Ht.
Table 3 shows that the total elasticities with respect to Ht are positive.

7 Prediction
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Following Chamberlain (1984), Sevestre and Trognon (1996), and Baltagi et.
al.(2014, 2018), the linear predictor is

E [lnwt] = B−1N [CNE [lnwt−1] + xtβ +GNE [ut]] (19)

in which E [.] denotes the expectation, so this can be seen to be identical
to equation (12) but with expectations. With regard to the estimate of the
time-invariant component of the error term µ , assuming a spatial moving
average error process we commence with equation (12) rewritten thus

εt = BN lnwt − CN lnwt−1 − xtβ
GNut = BN lnwt − CN lnwt−1 − xtβ

ut = µ+ νt

µ(t) = G−1N (BN lnwt − CN lnwt−1 − xtβ)− νt (20)

In order to obtain estimates µ̂(t) we use estimates ĜN , B̂N , ĈN and β̂ and
draw at random from νt ∼ N(0, σ̂2ν). We then take the mean over time of
the µ̂(t)s for t = 2, ..., T , subsequently scaling so that it has variance equal
to σ̂2µ,thus giving the estimate µ̂ of the time-invariant error component. The
outcome is the prediction equation

ln ŵt = B̂−1N

[
ĈN ln ŵt−1 + xtβ̂ + ĜN µ̂

]
(21)

7.1 total derivatives

It turns out that we can apply equation (21) to obtain the total short and
long run derivatives, thus aiding our appreciation of what these mean. For
the total short run effect relating to lnEt = x1t , we calculate the difference
between ln ŵta and ln ŵtb, where log wages increase from ln ŵtb to ln ŵta across
all n districts as a result of an increment ∆x1t in x1t across all N districts,
thus

ln ŵta = B̂−1N

[
ĈN ln ŵt−1,a + x0t β̂0 + (x1t + ∆x1t )β̂1 + x2t β̂2 + x3t β̂3 + ĜN µ̂

]
(22)

and
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ln ŵtb = B̂−1N

[
ĈN ln ŵt−1,b + x0t β̂0 + x1t β̂1 + x2t β̂2 + x3t β̂3 + ĜN µ̂

]
(23)

in which ∆x1t = 1, B̂N = (IN − ρ̂WN) , ĈN = (τ̂ + θ̂WN) and ĜN =(
IN − λ̂MN

)
.It follows that the derivative is the (average) change on log

wages divided by the change in lnEt = ∆x1t = 1,hence using the Table 2
estimates,

∂ ln ŵ

∂x1
=

N∑
i=1

(ln ŵita − ln ŵitb)

n
= −0.2559 (24)

which is what we have in Table 3. Likewise, in the long run10, ∆x1t =
1, t = 1, ..., T where T is a large number, in our case T = 50. For the long
run derivatives, we iterate equations (22) and (23) over t = 1, ..., T , holding
x1t , x2t and x3t constant at their t = 1 (2016) levels as t goes to T (= 50),and
it is possible to show that

∂ ln ŵ

∂x1
=

N∑
i=1

(ln ŵiTa − ln ŵiT b)

n
= −0.2423 (25)

which again replicates the log run Table 2 estimate. Similar equations
produce the same outcomes for the total derivatives relating to x2t .

7.2 one-step ahead predictions

In order to support our preference for the model summarised by Table 2, a
cross-validation strategy is employed to assess the performance of the com-
peting estimators ‘by comparing their predictive ability on data which have
not been used in model estimation’(Anselin, 1988). We measure the pre-
dictive ability of our rival models via the root mean square error (RMSE),
given by

10The assumption is that parameters and variables stay at the same level in the future,
otherwise the equilibrium outcome for wages will go to a new equilibrium commensurate
with the new levels.
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RMSE =

√√√√ n∑
i=1

(lnwit+1 − ln ŵit+1)
2 /n

Additionally, we employ mean absolute error (MAE), defined as

MAE =

n∑
i=1

|lnwit+1 − ln ŵit+1| /n

which gives less weight to large forecast errors than RMSE, and Theil’s
U which is

U =

√√√√ n∑
i=1

(lnwit+1 − ln ŵit+1)
2 /

n∑
i=1

(lnwit+1)2

In the latter, the numerator is essentially the RMSE, and the denomi-
nator is a way of making U independent of the units of measurement.
In order to predict one step ahead, and thus obtain ln ŵt+1, we apply

equation (21) with data11 for the year 2017 but use the parameter estimates
based on the period up to 2016 thus giving a clear separation between data
used for the estimates and data predicted. Table 4 gives the resulting fore-
cast accuracy measures for different estimators based on different maximum
commute times which then define different matrices WN and MN .

11Since the only 2017 data we have is for wages and E, the 2017 levels ofH were obtained
by projecting forward the 2016 levels using the annual growth rate over 2009 to 2016.
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Table 4 : Forecast Accuracy and Theoretical Consistency

commute < 50 min
RMSE,MAE,U, θG eAmax

0.096, 0.070, 0.015,−0.263 0.800
commute < 60 min
RMSE,MAE,U, θG eAmax

0.051, 0.040, 0.008,−0.614 1.173
commute < 70 min
RMSE,MAE,U, θG eAmax

0.052, 0.041, 0.008, 0.123 4.965
commute < 80 min
RMSE,MAE,U, θG eAmax

0.047, 0.037, 0.007,−0.514 0.687
commute < 85 min
RMSE,MAE,U, θG eAmax

0.044, 0.034, 0.007,−0.271 0.558
commute < 90 min
RMSE,MAE,U, θG eAmax

0.050, 0.040, 0.008,−0.340 0.516
Note : RMSE = root mean square error;MAE = mean absolute error

;U = Theil’s U ; θG = theory consistency measure; eAmax =maximum absolute real
eigenvalueof AN = B−1N CN .

In changing maximum commute times henceWN , the matrices ĜN , B̂N ,and
ĈN change, and the instruments in equation(14) also alter, so it is to be ex-
pected that the estimates obtained, and consequently the predictive ability of
the model, can fluctuate somewhat. In Table 4 we report the RMSE,MAE
and U statistics and also the maximum absolute real eigenvalue of AN =
B−1N CN , which we denote by eAmax . If e

A
max is equal to 1 or greater, then that

indicates that the model estimates are dynamically unstable. This is evident
from the ‘long run total derivates’ given by equation(25) and its counter-
part for x2, which taken on values very different from the result given by
equations(16) and (18). In other words there is no fixed elasticity relating to
our causal variables so it impossible to show the effect of changing density
on wages. On the other hand, with eAmax < 1,equation(25) and equations(16)
and (18) give identical outcomes. An additional consideration is the equality
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θ = −ρτ deriving from the assumed equilibrium process given by equation(7).
While our estimator does not permit strict satisfaction of this equality, we
prefer estimates that approach this as closely as possible. We represent the
closeness of this by θG = θ +ρτ in Table 4. On the basis of RMSE,MAE, U
and θG, a maximum commute time of 85minutes, produces accurate one-step
ahead predictions combined with the most appropriate parameter estimates
leading to log-run stability. The predictive accuracy of our model improves
up to a commute time of 85 minutes, which accounts for more than 95%
of all commuters (see Figure 1). Commuting up to 90 minutes includes a
few more extreme commuters but reduces the predictive performance of the
model. Figure 7 shows the actual versus predicted log wages for one-step
ahead assuming a commute times of up to 85 minutes. The predicted log
wage up to 50 steps ahead, obtained holding employment density and worker
skill constant at their 2016 levels, gives Figure 8, showing the paths of the
347 districts. By way of contrast, Figure 9 shows the lack of dynamic sta-
bility associated with assuming a maximum commute time of 60 minutes.
Other commute times for which eAmax > 1 show similar unrealistic long term
outcomes.

Figure 7 : Predictions from Table 2 estimates
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Figure 8 : Dynamics assuming maximum commute time is 85 minutes

Figure 9 : Dynamics assuming maximum commute time is 60 minutes
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8 The impact of HS1
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Figure 10 : Actual and predicted log wage 2009

In order to show that the HS1 effect predicted by the preferred model is
more realistic than the prediction under the simpler model, we consider the
difference in predicted wage before and after HS1 under both models. Figure
11 shows that despite significant heterogeneity in how actual wages changed
between 2007 and 2009 predictions of the preferred model are positively cor-
related with (both positive and negative) actual changes. This is not the
case for the simple model which is negatively related to the overall change in
actual wage ( as is evident from the slope of the best fit line and the equa-
tion given in Figure 12). The negative correlation is not surprising as the
simple model predicts that the change in most areas will be zero and Figure
13 shows that after adjusting for this fact, the simple model performs bet-
ter. When predictions of the two models are compared (Figure 14) it is clear
that the main differences are due to the simple model predicting no negative
effects and only effects in the directly affected areas. From Figure 14 it is
clear that the lower predictive power of the simple model comes mainly from
these drawbacks. This speaks to the forecasting ability of the dynamic panel
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model and shows that it can produce reliable forecasts at least of comparable
accuracy as simple estimates of treatment effects using actual data.
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Figure 11 : % change in
wages 2007 to 2009 in each
district in South East

England
versus predicted % change
due to HS1 given by the

preferred model
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HS1 effect : simple model v actual change

y = ­ 0.0024*x + 0.0017

Figure 12 : % change in
wages 2007 to 2009

versus predicted % change
due to HS1 given by the
simple model, including

districts with zero predicted
change.
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HS1 effect : simple model v actual change

y = 0.025*x + 0.0095

Figure 13 : % change in
wages 2007 to 2009 versus
predicted % change due to
HS1 given by the simple
model, having eliminated
districts with zero predicted

change
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HS1 effect : preferred model v simple model

y = 0.021*x + 0.0041

Figure 14 : Predicted %
change in wages

2007 to 2009 due to HS1
under preferred model

versus predicted % change
according to
simple model
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Although the predictions of the two models are correlated, the preferred
model offers significantly more heterogeneity in the predicted effect. This
includes not only allowing for negative effects but also for spatial spillovers.
Therefore to map HS1 effects estimated using the preferred model we assume
a maximum travel time of 85 minutes, leading to W̃N

(
M̃N

)
consistent with

pre-HS1 travel times. As12 with WN ,we again assume that W̃N is based
an n by n matrix of 1s and zeros D̃N . In this, 1 indicates that a pair of
districts are within 85 minutes commuting time from each other, and zero
indicates that they are not within 85 minutes travel time of each other. The
matrix, that is D̃N but with zeros on the leading diagonal, is subsequently
row normalized to give W̃N with non-zero values in row i indicating districts
within 85 minutes of district i, with each non-zero cell of row i containing
the same value. The weights matrix W̃N leads to G̃N , B̃N ,and C̃N , where
B̃N =

(
IN − ρ̂W̃N

)
, C̃N = (τ̂ IN + θ̂W̃N) and G̃N =

(
IN − λ̂M̃N

)
, which

togther with data for 2007 are used in the pre-HS1 prediction equation(21).
Post-HS1 (2009) predicted wages are obtained using post-HS1 travel times
giving ĜN , B̂N ,and ĈN combined with 2009 data, with parameter estimates
again taken from Table 2. Figure 15 shows the differences between before and
after HS1 predicted wage levels in England and Wales. To demonstrate how
estimates of the two models differ, in Figure 16 we present the difference
between the effects estimated using the simple model (Figure 5) and the
preferred model (Figure 15). Although, there is no clear spatial pattern to
the differences, the two models disagree on which areas benefited from HS1.
Indeed, the spatial pattern of changes predicted by the preferred model is a
better fit for actual changes in wages (presented in Figure 17) than estimates
of the simple model.

12We could envisage our approach within the context of convex combinations of different
types of connectivity structures (Debarsy and LeSage, 2018) with both matrices matrices
WN and W̃N embodied simultaneously within the model specification, but with weights 1
and zero according to which of the two matrices was relevant. However, trying to apply
this is beyond the scope of the current work.
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Figure 15a : Estimated
impact of HS1
on wages in

South East England
in 2009

according to
preferred model.

Figure 16a : Difference
between predicted HS1
effect under the simple

model
and predicted HS1
% wage increases

under the preferred model.

Figure 17a : % change in
wages over the period

2007-2009
in districts in the South

East Region of England plus
the county of Suffolk and
Southern Cambridgeshire.
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Figure 15b : Key to Figure
15a. Estimated impact of
HS1 according to preferred
model versus number of

districts.

Figure 16b : Key to Figure
16a. Difference in predicted
HS1 effect according to

simple and preferred models,
versus number of districts

Figure 17b : key to Figure
17a. Actual % change in
wages in South East

England versus number of
districts

Note : Fig. 15a -Lighter shading indicates bigger impact. Fig. 16a - Darker
shading indicates districts with higher % wage increases under the preferred model.
Fig. 17a - Dark shading indicates wage reduction.

9 Simulation outcomes for HS2

Compared with the HS1 impact analysis, we do not have ‘actual’wages to
compare against a counterfactual. Nevertheless the methodology is similar,
we simply compare two outcomes based on alternative assumptions regard-
ing travel times. One is embodied in a counterfactual model which presumes
that HS2 will not happen. The second is a prediction of wage levels based
on a model with travel times assuming the existence of HS2. To give more
detail, we first obtain predicted equilibrium wage levels (obtained by iter-
ating equation (23) for t = 1, ..., 50) as shown by Figure 8, using the Table
2 estimates and WN and MN , hence ĜN , B̂N ,and ĈN ,based on a maximum
commute time of 85 minutes. These predictions are compared with predicted
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wage levels assuming a post-HS2 impact on travel times, with again a max-
imum of 85 minutes, which gives W̃N

(
M̃N

)
. The difference, for t = 50, is

our preferred prediction of HS2 effects. In Figures 18 and 19 we compare
these HS2 effect predictions with predictions given by the simple model and
demonstrate that while there are similarities, the simple model does not al-
low for the possibility of negative impacts. Finally, a detailed map of our
preferred forecasts is given in Figure 20,with the dynamics leading to this
equilibrium outcome given by Figure 21. These highlight the diversity of
outcomes across all districts, many of which have no local HS2 treatment.
While the majority of districts have near-zero impacts, they are not exactly
zero, falling as low as −7%.
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Figure 18 : Predicted % change in wages due to HS2 according to simple
model and preferred model
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Note : R2 = 0.6196

Figure 19a : Difference
between HS2 predictions

Figure 19b : Difference
versus number of districts

Figure 19 : Difference between predicted HS2 effect under the simple
model and predicted HS2 effect under the preferred model

Note : Darker shading indicates districts with higher % wage increases under
the preferred model.

The mean effect is to increase equilibrium wages by almost 2%, but that
conceals a diverse range of outcomes, from a maximum difference of 24.9%
(Derby) to a minimum of −7%(Great Yarmouth). As with WN ,we again
assume that W̃N is based an n by n matrix of 1s and zeros D̃N . In this, 1
indicates that a pair of districts are within 85 minutes commuting time from
each other, taking into account the change in travel times due to HS2, and
zero indicates that they are not within 85 minutes travel time of each other.
The resulting weights matrix W̃N leads to G̃N , B̃N ,and C̃N , which are used
in the prediction equation(21) in place of ĜN , B̂N ,and ĈN . We again hold
employment density (Et), worker skill (ht) and mean wages (wt) constant at
their 2016 levels, but in this case the improved travel times lead to additional
skilled workers within commuting distance, as given by H̃t = D̃Nht.
One assumption that could not be captured by our estimation approach

is that the 85 minute travel time will remain the optimal limit of commuting
distance after HS2 is completed. It is possible that transportation innova-
tions could affect the maximum time workers are willing to spend traveling.
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However, there are several reasons to believe that this is not an issue for
our predictions. First, our estimation of travel times includes high speed
trains, thus our estimates capture the choice workers make between fast
trains and other transport modes. Since our maximum travel time is in-
formed by analysing revealed preferences over time and because the overall
choice set of transportation modes does not change, the 85 minute limit is
likely to be the same after HS2 is developed. This assumption is consistent
with the finding of a report by The Royal Academy of Engineering (RAE
2015) that changes in congestion did not affect the maximum amount of
time people are willing to spend driving to work over the last 20 years. It is
also consistent with the figures reported by the UK Department for Trans-
portation, which show that average travel times in the UK have not changed
significantly over the last three decades (DFT 2016). Finally, we show that
using the 85min travel time limit works well in predicting the impact of HS1.
This shows that maximum travel times are unlikely to change over time and
even if this assumption is violated, the changes are small and do not affect
model predictions significantly.

Figure 20a : Impact of HS2
according to the preferred

model.

Figure 20b : Key to Figure
20a. % wage shortfall
without HS2

Figure 20 : Impact of HS2
Note : Fig. 20a, districts with darker shading have largest % wage in-

creases
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Figure 21 : HS2 prediction dynamics in accordance with Figures 20a and
20b

Note : The evolution of the HS2 effect towards equilibrium according to the
preferred model. This ranges from 24.9% to -7%.

10 Conclusion

The paper presents a method of forecasting the impact of transportation in-
novations on wages using a spatial version of a traditional urban economics
model and a prediction equation based on a dynamic spatial panel estimator.
In particular, we focus on predicting the spatial distribution of the impact
of a high speed rail improvement programme (HS2) planned by the UK gov-
ernment based on the projected changes in travel times under HS2. Our
preliminary data analysis shows that wage levels are correlated with mean
travel times to other districts, indicating that links to other locations are an
important determinant of local wages. We capture this effect by including
commuting into our model explaining spatial and temporal wage variation.
We find that optimal results for our preferred model are obtained assum-
ing commutable distance to be no more than 85 minutes travel time. We
test this model by estimating the impact of a realised high speed rail (HS1)
improvement project, comparing the estimated impact given by our model
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with a simpler approach devoid of the commuting induced spatial interac-
tions embodied in our model. The results show that our model performs
comparatively better than the simpler approach, allowing a greater diver-
sity of outcome, with effects transmitting over a wide range of districts not
directly benefitting from investment under the HS1 project.
In our HS2 impact forecasts based on this model, we find that HS2 will

on average positively increase wages but that the impact will be spatially
uneven. The districts that will benefit most will be the ones projected to
see the biggest reduction in commute times, due either to direct access to
new stations or to the indirect effect of better commute times even where
there is no direct access. One major concern evident in the literature is the
negative impact of transport innovation on some places which lose their most
productive and better paid workers who move to jobs in districts benefitting
directly from an improvement in transport infrastructure, causing wages to
fall rather than increase. However, the broadly positive benefits embodied in
our analysis reflects the multi-facetted spatial dependence embodied within
our simulation model. Wages across districts are mutually interdependent
even if these other districts are not the direct or even indirect beneficia-
ries of a new HS2 station. Moreover, under our model a district’s wage
depends on its own wage in the previous period, and on temporally lagged
wages within commuting distance. Via the economic theory underpinning
our model, wages also depend on the density of employment locally within
each district, and on the mass of educated workers within commuting dis-
tance. Additionally, wages are a consequence of unobserved effects embodied
within the compound errors of the model, which are also spatially dependent
according to commuting distance. The outcome is that linking an under-
performing district with a successful does not adversely affect wages in the
low wage district. In fact, our model indicates that the opposite is true.
The projected positive impact of HS2 is driven by access to new workers,
indeed, the biggest projected positive HS2 impacts are for districts at the
lower end of the wage spectrum. This is because low wage districts tend to
be relatively remote and see the greatest benefit from enhanced connectivity.
Locations that will benefit the most from the new infrastructure will be the
ones that currently have the poorest links to the rest of the economy. This
has important implications for transport investment as an instrument of pol-
icy aimed at reducing spatial disparities in economic performance. Typically
firms in such districts will gain access to workers with different skills. Gener-
ally, transportation innovation allows workers to travel further and firms to
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benefit from a larger labour pool. This has been shown in other studies to
have a positive impact on productivity of both firms and workers (Duranton
and Turner, 2012).
One caveat regarding this interpretation is that we assume that our es-

timates obtained using current transportation times remain stable as trans-
portation improvements are implemented. Although this assumption is im-
possible to test directly, there is international evidence (Redding and Turner,
2015) that travel time budgets remain constant over time. If workers value
their time equally before and after changes to transportation networks, our
estimates of their choices should also remain unaffected.
Finally, it is important to emphasize that while our aggregate analysis

provides a plausible methodology to prediction at the aggregate level, it is
not intended to be a full or complete account of the determinants of wage
levels and the role played by economic density. We appreciate that a fuller
picture of this can be provided by analysis at the micro-level, especially tak-
ing into account worker-specific heterogeneity (Combes et. al., 2012, Doran
and Fingleton, 2015). As an example, Fingleton and Longhi(2013) combine
employment density and market potential at the aggregate level with indi-
vidual level variables (gender, occupational status, family status and age)
to explain individual residence-based wage levels, as provided by the British
Household Panel Survey.

11 Appendix : The theory underpinning equa-
tion (1)

In this section we set out a well-established theoretical basis for our model
given as equation (1), as given by Abdel-Rahman and Fujita(1990), Ciccone
and Hall(1996) and Fujita and Thisse(2002), among others. In this we partly
follow the exposition given by Fingleton(2003).
The equilibrium wage derives from the existence of equilibrium in the

‘services’sector of the economy, that is the sector under monopolistic com-
petition. The equilibrium for a service firm (m) considered at the micro-level
is a profit maximising equilibrium, so at this point (with free entry etc) prof-
its are driven to 0. Denote profits by π, output by im,wages by w and labour
by aim+s, where fixed parameter s is fixed costs and a is variable cost. Also
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the profit maximising price is pm = waµ, which is equal to marginal cost wa
times mark up µ, since we don’t have perfect competition, and µ is a measure
of monopoly power. The profit maximising price is given by the derivative
∂π/∂pm = 0 of the service profit function π with respect to price pm, where

im = kp
−(µ/(µ−1))
m so that π = pmkp

−(µ/(µ−1))
m −w

(
akp

−(µ/(µ−1))
m + s

)
. Given

π = 0,

waµim = waim + ws

ws = (µ− 1)waim

im =
s

a (µ− 1)

So im is the equilibrium level of output, denoted from now on by i. All
service firms are identical, each with equilibrium labour force L = ai+s.Given
(1− β) is the share of the workforce in the service sector, then total service
employment is (1− β)E where E is total labour. Dividing total services
employment by the employment size of each firm (L) gives the number of
service firms

x =
(1− β)E

ai+ s
Hence

Q =
[
MβI1−β

]α
L1−α =

[
MβI1−β

]α
industry production function, with L(land) =1

I = xµi services production function

Q =
[
Mβxµ−βµi1−β

]α
x =

(1− β)E

ai+ s
number of service firms at equilibrium

M = βE

Q = Eα(β+µ−βµ)
[
ββ(ai+ s)µ(β−1)i1−β (1− β)−µ(β−1)

]α
Q = Eα[1+(1−β)(µ−1)]φ

Q = φEγ

lnQ = lnφ+ γ lnE

With γ > 1,there are increasing returns to density. But with small α so
that γ < 1, the effect of ‘congestion’is so severe that it completely overturns
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any tendency to increasing returns. Increasing density is not accompanied
by a commensurate increase in output.
From the marginal product of labour, w = ∂Q/∂M = βαQ/M in which

M = βE is industry labour, so that the total wage bill as a share of Q is
wE/Q = α, hence lnw = lnα+lnQ− lnE and lnw = lnα+[lnφ+ γ lnE]−
lnE so that

lnw = lnϕ+ (γ − 1) lnE (26)

So equilibrium wage is an outcome of the marginal product of labour
theory and the theory giving the equilibrium output for service firms. Thus
equation (26) provides the basis for equation (1).
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Figure 1a : Impact of HS1
on wages in 2009

Figure 1b : Key to
Figure 1a
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Figure 2 : The relationship between local employment density and
predicted wage under the preferred model
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